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Michael Good
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1 Exercises

11. Consider a uniform thin disk that rolls without slipping on a horizontal
plane. A horizontal force is applied to the center of the disk and in a direction
parallel to the plane of the disk.

• Derive Lagrange’s equations and find the generalized force.

• Discuss the motion if the force is not applied parallel to the plane of the
disk.

Answer:

To find Lagrangian’s equations, we need to first find the Lagrangian.

L = T − V

T =
1
2
mv2 =

1
2
m(rω)2 V = 0

Therefore

L =
1
2
m(rω)2

Plug into the Lagrange equations:

d

dt

∂L

∂ẋ
− ∂L

∂x
= Q

d

dt

∂ 1
2mr

2ω2

∂(rω)
−
∂ 1

2mr
2ω2

∂x
= Q

d

dt
m(rω) = Q

m(rω̈) = Q
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If the motion is not applied parallel to the plane of the disk, then there
might be some slipping, or another generalized coordinate would have to be
introduced, such as θ to describe the y-axis motion. The velocity of the disk
would not just be in the x-direction as it is here.

12. The escape velocity of a particle on Earth is the minimum velocity re-
quired at Earth’s surface in order that that particle can escape from Earth’s
gravitational field. Neglecting the resistance of the atmosphere, the system is
conservative. From the conservation theorme for potential plus kinetic energy
show that the escape veolcity for Earth, ingnoring the presence of the Moon, is
11.2 km/s.

Answer:

GMm

r
=

1
2
mv2

GM

r
=

1
2
v2

Lets plug in the numbers to this simple problem:

(6.67× 10−11) · (6× 1024)
(6× 106)

=
1
2
v2

This gives v = 1.118× 104 m/s which is 11.2 km/s.

13. Rockets are propelled by the momentum reaction of the exhaust gases
expelled from the tail. Since these gases arise from the raction of the fuels carried
in the rocket, the mass of the rocket is not constant, but decreases as the fuel
is expended. Show that the equation of motion for a rocket projected vertically
upward in a uniform gravitational field, neglecting atmospheric friction, is:

m
dv

dt
= −v′ dm

dt
−mg

where m is the mass of the rocket and v’ is the velocity of the escaping gases
relative to the rocket. Integrate this equation to obtain v as a function of m,
assuming a constant time rate of loss of mass. Show, for a rocket starting initally
from rest, with v’ equal to 2.1 km/s and a mass loss per second equal to 1/60th
of the intial mass, that in order to reach the escape velocity the ratio of the
wight of the fuel to the weight of the empty rocket must be almost 300!

Answer:

This problem can be tricky if you’re not very careful with the notation. But
here is the best way to do it. Defining me equal to the empty rocket mass,
mf is the total fuel mass, m0 is the intitial rocket mass, that is, me +mf , and
dm
dt = −m0

60 as the loss rate of mass, and finally the goal is to find the ratio of
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mf/me to be about 300.

The total force is just ma, as in Newton’s second law. The total force on
the rocket will be equal to the force due to the gas escaping minus the weight
of the rocket:

ma =
d

dt
[−mv′]−mg

m
dv

dt
= −v′ dm

dt
−mg

The rate of lost mass is negative. The velocity is in the negative direction,
so, with the two negative signs the term becomes positive.

Use this:

dv

dm

dm

dt
=
dv

dt

Solve:

m
dv

dm

dm

dt
= −v′ dm

dt
−mg

dv

dm

dm

dt
= − v

′

m

dm

dt
− g

dv

dm
= − v

′

m
+

60g
m0

Notice that the two negative signs cancelled out to give us a positive far
right term.

dv = − v
′

m
dm+

60g
m0

dm

Integrating, ∫
dv = −v′

∫ me

m0

dm

m
+

∫ me

m0

60g
m0

dm

v = −v′ ln me

m0
+

60g
m0

(me −m0)

v = −v′ ln me

me +mf
+ 60g

me −me −mf

me +mf

v = v′ ln
me +mf

me
− 60g

mf

me +mf

Now watch this, I’m going to use my magic wand of approximation. This is
when I say that because I know that the ratio is so big, I can ignore the empty
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rocket mass as compared to the fuel mass. me << mf . Let me remind you, we
are looking for this ratio as well. The ratio of the fuel mass to empty rocket,
mf/me.

v = v′ ln
me +mf

me
− 60g

mf

me +mf

v = v′ ln
mf

me
− 60g

mf

mf

v + 60g
v′

= ln
mf

me

exp[
v + 60g
v′

] =
mf

me

Plug in 11,200 m/s for v, 9.8 for g, and 2100 m/s for v′.

mf

me
= 274

And, by the way, if Goldstein hadn’t just converted 6800 ft/s from his second
edition to 2.1 km/s in his third edition without checking his answer, he would
have noticed that 2.07 km/s which is a more accurate approximation, yields a
ratio of 296. This is more like the number 300 he was looking for.

14. Two points of mass m are joined by a rigid weightless rod of length l, the
center of which is constrained to move on a circle of radius a. Express the kinetic
energy in generalized coordinates.

Answer:

T1 + T2 = T

Where T1 equals the kinetic energy of the center of mass, and T2 is the ki-
netic energy about the center of mass. Keep these two parts seperate!

Solve for T1 first, its the easiest:

T1 =
1
2
Mv2

cm =
1
2
(2m)(aψ̇)2 = ma2ψ̇2

Solve for T2, realizing that the rigid rod is not restricted to just the X-Y
plane. Don’t forget the Z-axis!

T2 =
1
2
Mv2 = mv2

Solve for v2 about the center of mass. The angle φ will be the angle in the
x-y plane, while the angle θ will be the angle from the z-axis.

4



If θ = 90o and φ = 0o then x = l/2 so:

x =
l

2
sin θ cosφ

If θ = 90o and φ = 90o then y = l/2 so:

y =
l

2
sin θ sinφ

If θ = 0o, then z = l/2 so:

z =
l

2
cos θ

Find v2:

ẋ2 + ẏ2 + ż2 = v2

ẋ =
l

2
(cosφ cos θθ̇ − sin θ sinφφ̇)

ẏ =
1
2
(sinφ cos θθ̇ + sin θ cosφφ̇)

ż = − l
2

sin θθ̇

Carefully square each:

ẋ2 =
l2

4
cos2 φ cos2 θθ̇2 − 2

l

2
sin θ sinφφ̇

l

2
cosφ cos θθ̇ +

l2

4
sin2 θ sin2 φφ̇2

ẏ2 =
l2

4
sin2 φ cos2 θθ̇2 + 2

l

2
sin θ cosφφ̇

l

2
sinφ cos θθ̇ +

l2

4
sin2 θ cos2 φφ̇2

ż2 =
l2

4
sin2 θθ̇2

Now add, striking out the middle terms:

ẋ2+ẏ2+ż2 =
l2

4
[cos2 φ cos2 θθ̇2+sin2 θ sin2 φφ̇2+sin2 φ cos2 θθ̇2+sin2 θ cos2 φφ̇2+sin2 θθ̇2]

Pull the first and third terms inside the brackets together, and pull the
second and fourth terms together as well:

v2 =
l2

4
[cos2 θθ̇2(cos2 φ+ sin2 φ) + sin2 θφ̇2(sin2 φ+ cos2 φ) + sin2 θθ̇2]
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v2 =
l2

4
(cos2 θθ̇2 + sin2 θθ̇2 + sin2 θφ̇2)

v2 =
l2

4
(θ̇2 + sin2 θφ̇2)

Now that we finally have v2 we can plug this into T2

T = T1 + T2 = ma2ψ̇2 +m
l2

4
(θ̇2 + sin2 θφ̇2)

It was important to emphasize that T1 is the kinetic energy of the total mass
around the center of the circle while T2 is the kinetic energy of the masses about
the center of mass. Hope that helped.

15. A point particle moves in space under the influence of a force derivable from
a generalized potential of the form

U(r,v) = V (r) + σ · L

where r is the radius vector from a fixed point, L is the angular momentum
about that point, and σ is a fixed vector in space.

1. Find the components of the force on the particle in both Cartesian and
spherical poloar coordinates, on the basis of Lagrangian’s equations with
a generalized potential

2. Show that the components in the two coordinate systems are related to
each other as in the equation shown below of generalized force

3. Obtain the equations of motion in spherical polar coordinates

Qj =
∑

i

Fi ·
∂ri

∂qj

Answer:

This one is a fairly tedious problem mathematically. First lets find the
components of the force in Cartesian coordinates. Convert U(r, v) into Cartesian
and then plug the expression into the Lagrange-Euler equation.

Qj =
d

dt

∂

∂q̇j
[V (

√
x2 + y2 + z2)+σ ·(r×p)]− ∂

∂qj
[V (

√
x2 + y2 + z2)+σ ·(r×p)]

Qj =
d

dt

∂

∂v̇j
[σ·[(xî+yĵ+zk̂)×(pxî+py ĵ+pz k̂)]−

∂

∂xj
[V (

√
x2 + y2 + z2)+σ·(r×p)]
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Qj =
d

dt

∂

∂v̇j
[σ·[(ypz−zpy )̂i+(zpx−xpz)ĵ+(xpy−pxy)k̂]−

∂

∂xj
[V (

√
x2 + y2 + z2)+σ·(r×p)]

Qj =
d

dt

∂

∂v̇j
[mσx(yvz−zvy)+mσy(zvx−xvz)+mσz(xvy−vxy)]−

∂

∂xj
[V (

√
x2 + y2 + z2)+σ·(r×p)]

Where we know that

mσx(yvz − zvy) +mσy(zvx − xvz) +mσz(xvy − vxy) = σ · (r × p)

So lets solve for just one component first and let the other ones follow by
example:

Qx =
d

dt
(mσyz−mσzy)−

∂

∂x
[V (

√
x2 + y2 + z2)+mσx(yvz−zvy)+mσy(zvx−xvz)+mσz(xvy−vxy)]

Qx = m(σyvz−σzvy)− [V ′(
√
x2 + y2 + z2)(x2 +y2 +z2)−

1
2x−mσyvz +mσzvy]

Qx = 2m(σyvz − σzvy)− V ′x

r

If you do the same for the y and z components, they are:

Qy = 2m(σzvx − σxvz)− V ′ y

r

Qz = 2m(σxvy − σyvx)− V ′ z

r

Thus the generalized force is:

F = 2m(σ × v)− V ′ r
r

Now its time to play with spherical coordinates. The trick to this is setting
up the coordinate system so that σ is along the z axis. Thus the dot product
simplifies and L is only the z-component.

U = V (r) +mσ(xẏ − yẋ)

With spherical coordinate definitions:

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ

Solving for (xẏ − yẋ)
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ẋ = r(− sin θ sinφφ̇+ cosφ cos θθ̇) + ṙ sin θ cosφ

ẏ = r(sin θ cosφφ̇+ sinφ cos θθ̇) + ṙ sin θ sinφ

Thus xẏ − yẋ is

= r sin θ cosφ[r(sin θ cosφφ̇+ sinφ cos θθ̇) + ṙ sin θ sinφ]

−r sin θ sinφ[r(− sin θ sinφφ̇+ cosφ cos θθ̇) + ṙ sin θ cosφ].

Note that the ṙ terms drop out as well as the θ̇ terms.

xẏ − yẋ = r2 sin2 θ cos2 φφ̇+ r2 sin2 θ sin2 φφ̇

xẏ − yẋ = r2 sin2 θφ̇

Thus

U = V (r) +mσr2 sin2 θφ̇

Plugging this in to Lagrangian’s equations yields:

For Qr:

Qr = −∂U
∂r

+
d

dt
(
∂U

∂ṙ
)

Qr = −dV
dr

− 2mσr sin2 θφ̇+
d

dt
(0)

Qr = −dV
dr

− 2mσr sin2 θφ̇

For Qθ:
Qθ = −2mσr2 sin θφ̇ cos θ

For Qφ:

Qφ =
d

dt
(mσr2 sin2 θ)

Qφ = mσ(r22 sin θ cos θθ̇ + sin2 θ2rṙ)

Qφ = 2mσr2 sin θ cos θθ̇ + 2mσrṙ sin2 θ

For part b, we have to show the components of the two coordinate systems
are related to each other via

Qj =
∑

i

Fi ·
∂ri

∂qj

Lets take φ for an example,

Qφ = F · ∂r
∂φ

= Fx
∂x

∂φ
+ Fy

∂y

∂φ
+ Fz

∂z

∂φ
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Qφ = Qx(−r sin θ sinφ) +Qy(r sin θ cosφ) +Qz(0)

Qφ = [2m(σyvz−σzvy)−V ′x

r
](−r sin θ sinφ)+[2m(σzvx−σxvz)−V ′ y

r
](r sin θ cosφ)+0

Because in both coordinate systems we will have σ pointing in only the z
direction, then the x and y σ’s disappear:

Qφ = [2m(−σzvy)− V ′x

r
](−r sin θ sinφ) + [2m(σzvx)− V ′ y

r
](r sin θ cosφ)

Pull out the V ′ terms, plug in x and y, see how V ′ terms cancel

Qφ = V ′(x sin θ sinφ− y sin θ cosφ)− 2mr sin θσ[vy sinφ+ vx cosφ]

Qφ = V ′(r sin2 θ cosφ sinφ− r sin2 θ sinφ cosφ)− 2mr sin θσ[vy sinφ+ vx cosφ]

Qφ = −2mr sin θσ[vy sinφ+ vx cosφ]

Plug in vy and vx:

Qφ = −2mr sin θσ[sinφ(r sin θ cosφφ̇+ r sinφ cos θθ̇ + ṙ sin θ sinφ)

+ cosφ(−r sin θ sinφφ̇+ r cosφ cos θθ̇ + ṙ sin θ cosφ)].

Qφ = 2mσr sin θ[r sin2 φ cos θθ̇ + ṙ sin θ sin2 φ

+r cos2 φ cos θθ̇ + ṙ sin θ cos2 φ].

Gather sin2’s and cos2’s:

Qφ = 2mσr sin θ[r cos θθ̇ + ṙ sin θ]

This checks with the derivation in part a for Qφ. This shows that indeed
the components in the two coordinate systems are related to each other as

Qj =
∑

i

Fi ·
∂ri

∂qj

Any of the other components could be equally compared in the same proce-
dure. I chose Qφ because I felt it was easiest to write up.

For part c, to obtain the equations of motion, we need to find the general-
ized kinetic energy. From this we’ll use Lagrange’s equations to solve for each
component of the force. With both derivations, the components derived from
the generalized potential, and the components derived from kinetic energy, they
will be set equal to each other.

In spherical coordinates, v is:

9



v = ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂

The kinetic energy in spherical polar coordinates is then:

T =
1
2
mv2 =

1
2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)

For the r component:

d

dt
(
∂T

∂ṙ
)− ∂T

∂r
= Qr

d

dt
(mṙ)−mrθ̇2 −mr sin2 θφ̇2 = Qr

mr̈ −mrθ̇2 −mr sin2 θφ̇2 = Qr

From part a,

Qr = −V ′ − 2mσr sin2 θφ̇

Set them equal:

mr̈ −mrθ̇2 −mr sin2 θφ̇2 = Qr = −V ′ − 2mσr sin2 θφ̇

mr̈ −mrθ̇2 −mr sin2 θφ̇2 + V ′ + 2mσr sin2 θφ̇ = 0

mr̈ −mrθ̇2 +mr sin2 θφ̇(2σ − φ̇) + V ′ = 0

For the θ component:

d

dt
(
∂T

∂θ̇
)− ∂T

∂θ
= Qθ

d

dt
(mr2θ̇)−mr2 sin θφ̇2 cos θ = Qθ

mr2θ̈ + 2mrṙθ̇ −mr2 sin θφ̇2 cos θ = Qθ

From part a,

Qθ = −2mσr2 sin θ cos θφ̇

Set the two equal:

mr2θ̈ + 2mrṙθ̇ −mr2 sin θφ̇2 cos θ + 2mσr2 sin θ cos θφ̇ = 0

mr2θ̈ + 2mrṙθ̇ +mr2 sin θ cos θφ̇(2σ − φ̇) = 0
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For the last component, φ we have:

d

dt
(
∂T

∂φ̇
)− ∂T

∂φ
= Qφ

d

dt
(mr2 sin2 θφ̇)− 0 = Qφ

mr2
d

dt
(sin2 θφ̇) + 2mrṙ sin2 θφ̇ = Qφ

mr2 sin2 θφ̈+ 2mr2 sin θ cos θθ̇φ̇+ 2mrṙ sin2 θφ̇ = Qφ

From part a,

Qφ = 2mσr2 sin θ cos θθ̇ + 2mσrṙ sin2 θ

Set the two equal:

mr2 sin2 θφ̈+2mr2 sin θ cos θθ̇φ̇+2mrṙ sin2 θφ̇−2mσr2 sin θ cos θθ̇−2mσrṙ sin2 θ = 0

mr2 sin2 θφ̈+ 2mr2 sin θ cos θθ̇(φ̇− σ) + 2mrṙ sin2 θ(φ̇− σ) = 0

That’s it, here are all of the equations of motion together in one place:

mr̈ −mrθ̇2 +mr sin2 θφ̇(2σ − φ̇) + V ′ = 0

mr2θ̈ + 2mrṙθ̇ +mr2 sin θ cos θφ̇(2σ − φ̇) = 0

mr2 sin2 θφ̈+ 2mr2 sin θ cos θθ̇(φ̇− σ) + 2mrṙ sin2 θ(φ̇− σ) = 0

16. A particle moves in a plane under the influence of a force, acting toward a
center of force, whose magnitude is

F =
1
r2

(1− ṙ2 − 2r̈r
c2

)

where r is the distance of the particle to the center of force. Find the generalized
potential that will result in such a force, and from that the Lagrangian for the
motion in a plane. The expression for F represents the force between two charges
in Weber’s electrodynamics.

Answer:

This one takes some guess work and careful handling of signs. To get from
force to potential we will have to take a derivative of a likely potential. Note
that if you expand the force it looks like this:
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F =
1
r2
− ṙ2

c2r2
+

2r̈
c2r

We know that

−∂U
∂r

+
d

dt

∂U

∂ṙ
= F

So lets focus on the time derivative for now. If we want a r̈ we would have
to take the derivative of a ṙ. Let pick something that looks close, say 2ṙ

c2r :

d

dt
(

2ṙ
c2r

) =
2ṙ
c2

(− ṙ

r2
) +

2r̈
c2r

= − 2ṙ2

c2r2
+

2r̈
c2r

Excellent! This has our third term we were looking for. Make this stay the
same when you take the partial with respect to ṙ.

∂

∂ṙ

ṙ2

c2r
=

2ṙ
c2r

So we know that the potential we are guessing at, has the term ṙ2

c2r in it. Lets
add to it what would make the first term of the force if you took the negative
partial with respect to r, see if it works out.

That is,

− ∂

∂r

1
r

=
1
r2

So

U =
1
r

+
ṙ2

c2r

might work. Checking:

−∂U
∂r

+
d

dt

∂U

∂ṙ
= F

We have

∂U

∂r
= − 1

r2
− ṙ2

c2r2

and

d

dt

∂U

∂ṙ
=

d

dt

2ṙ
c2r

=
2ṙ
c2

(− ṙ

r2
) +

1
r
(
2r̈
c2

) = − 2ṙ2

c2r2
+

2r̈
c2r

thus

−∂U
∂r

+
d

dt

∂U

∂ṙ
=

1
r2

+
ṙ2

c2r2
− 2ṙ2

c2r2
+

2r̈
c2r

−∂U
∂r

+
d

dt

∂U

∂ṙ
=

1
r2
− ṙ2

c2r2
+

2r̈
c2r
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This is indeed the force unexpanded,

F =
1
r2

(1− ṙ2 − 2r̈r
c2

) =
1
r2
− ṙ2

c2r2
+

2r̈
c2r

Thus our potential, U = 1
r + ṙ2

c2r works. To find the Lagrangian use L =
T − U . In a plane, with spherical coordinates, the kinetic energy is

T =
1
2
m(ṙ2 + r2θ̇2)

Thus

L =
1
2
m(ṙ2 + ṙ2θ̇2)− 1

r
(1 +

ṙ2

c2
)

17. A nucleus, originally at rest, decays radioactively by emitting an electron
of momentum 1.73 MeV/c, and at right angles to the direction of the electron
a neutrino with momentum 1.00 MeV/c. The MeV, million electron volt, is a
unit of energy used in modern physics equal to 1.60×10−13 J. Correspondingly,
MeV/c is a unit of linear momentum equal to 5.34 × 10−22 kg·m/s. In what
direction does the nucleus recoil? What is its momentum in MeV/c? If the mass
of the residual nucleus is 3.90× 10−25 kg what is its kinetic energy, in electron
volts?

Answer:

If you draw a diagram you’ll see that the nucleus recoils in the opposite
direction of the vector made by the electron plus the neutrino emission. Place
the neutrino at the x-axis, the electron on the y axis and use pythagorean’s
theorme to see the nucleus will recoil with a momentum of 2 Mev/c. The
nucleus goes in the opposite direction of the vector that makes an angle

θ = tan−1 1.73
1

= 60◦

from the x axis. This is 240◦ from the x-axis.
To find the kinetic energy, you can convert the momentum to kg ·m/s, then

convert the whole answer that is in joules to eV,

T =
p2

2m
=

[2(5.34× 10−22)]2

2 · 3.9× 10−25
· 1MeV

1.6× 10−13J
· 106eV

1MeV
= 9.13eV
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18. A Lagrangian for a particular physical system can be written as

L′ =
m

2
(aẋ2 + 2bẋẏ + cẏ2)− K

2
(ax2 + 2bxy + cy2).

where a, b, and c are arbitrary constants but subject to the condition that
b2 − ac 6= 0. What are the equations of motion? Examine particularly the two
cases a = 0 = c and b = 0, c = −a. What is the physical system described
by the above Lagrangian? Show that the usual Lagrangian for this system as
defined by Eq. (1.57’):

L′(q, q̇, t) = L(q, q̇, t) +
dF

dt

is related to L′ by a point transformation (cf. Derivation 10). What is the
significance of the condition on the value of b2 − ac?

Answer:

To find the equations of motion, use the Euler-Lagrange equations.

∂L′

∂q
=

d

dt

∂L′

∂q̇

For x first:

−∂L
′

∂x
= −(−Kax−Kby) = K(ax+ by)

∂L′

∂ẋ
= m(aẋ+ bẏ)

d

dt

∂L′

∂ẋ
= m(aẍ+ bÿ)

Thus

−K(ax+ by) = m(aẍ+ bÿ)

Now for y:

−∂L
′

∂y
= −(−Kby −Kcy) = K(bx+ cy)

∂L′

∂ẋ
= m(bẋ+ cẏ)

d

dt

∂L′

∂ẋ
= m(bẍ+ cÿ)

Thus

−K(bx+ cy) = m(bẍ+ cÿ)
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Therefore our equations of motion are:

−K(ax+ by) = m(aẍ+ bÿ)

−K(bx+ cy) = m(bẍ+ cÿ)

Examining the particular cases, we find:

If a = 0 = c then:

−Kx = mẍ −Ky = −mÿ

If b = 0, c = −a then:

−Kx = mẍ −Ky = −mÿ

The physical system is harmonic oscillation of a particle of mass m in two
dimensions. If you make a substitution to go to a different coordinate system
this is easier to see.

u = ax+ by v = bx+ cy

Then

−Ku = mü

−Kv = mv̈

The system can now be more easily seen as two independent but identical
simple harmonic oscillators, after a point transformation was made.

When the condition b2 − ac 6= 0 is violated, then we have b =
√
ac, and L′

simplifies to this:

L′ =
m

2
(
√
aẋ+

√
cẏ)2 − K

2
(
√
ax+

√
cy)2

Note that this is now a one dimensional problem. So the condition keeps the
Lagrangian in two dimensions, or you can say that the transformation matrix(

a b
b c

)
is singluar because b2 − ac 6= 0 Note that(

u
v

)
=

(
a b
b c

) (
x
y

)
.

So if this condition holds then we can reduce the Lagrangian by a point
transformation.

19. Obtain the Lagrange equations of motion for spherical pendulum, i.e., a
mass point suspended by a rigid weightless rod.
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Answer:

The kinetic energy is found the same way as in exercise 14, and the potential
energy is found by using the origin to be at zero potential.

T =
1
2
ml2(θ̇2 + sin2 θφ̇2)

If θ is the angle from the positive z-axis, then at θ = 90◦ the rod is aligned
along the x-y plane, with zero potential. Because cos(90) = 0 we should expect
a cos in the potential. When the rod is aligned along the z-axis, its potential
will be its height.

V = mgl cos θ

If θ = 0 then V = mgl. If θ = 180 then V = −mgl.
So the Lagrangian is L = T − V .

L =
1
2
ml2(θ̇2 + sin2 θφ̇2)−mgl cos θ

To find the Lagrangian equations, they are the equations of motion:

∂L

∂θ
=

d

dt

∂L

∂θ̇

∂L

∂φ
=

d

dt

∂L

∂φ̇

Solving these yields:

∂L

∂θ
= ml2 sin θφ̇2 cos θ +mgl sin θ

d

dt

∂L

∂θ̇
= ml2θ̈

Thus
ml2 sin θφ̇2 cos θ +mgl sin θ −ml2θ̈ = 0

and

∂L

∂φ
= 0

d

dt

∂L

∂φ̇
=

d

dt
(ml2 sin2 θφ̇) = ml2 sin2 θφ̈+ 2φ̇ml2 sin θ cos θ

Thus
ml2 sin2 θφ̈+ 2φ̇ml2 sin θ cos θ = 0
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Therefore the equations of motion are:

ml2 sin θφ̇2 cos θ +mgl sin θ −ml2θ̈ = 0

ml2 sin2 θφ̈+ 2φ̇ml2 sin θ cos θ = 0

20. A particle of massmmoves in one dimension such that it has the Lagrangian

L =
m2ẋ4

12
+mẋ2V (x)− V2(x)

where V is some differentiable function of x. Find the equation of motion for
x(t) and describe the physical nature of the system on the basis of this system.

Answer:

I believe there are two errors in the 3rd edition version of this question.
Namely, there should be a negative sign infront of mẋ2V (x) and the V2(x)
should be a V 2(x). Assuming these are all the errors, the solution to this
problem goes like this:

L =
m2ẋ4

12
−mẋ2V (x)− V 2(x)

Find the equations of motion from Euler-Lagrange formulation.

∂L

∂x
= −mẋ2V ′(x)− 2V (x)V ′(x)

∂L

∂ẋ
=
m2ẋ3

3
+ 2mẋV (x)

d

dt

∂L

∂ẋ
= m2ẋ2ẍ+ 2mV (x)ẍ

Thus

mẋ2V ′ + 2V V ′ +m2ẋ2ẍ+ 2mV ẍ = 0

is our equation of motion. But we want to interpret it. So lets make it look
like it has useful terms in it, like kinetic energy and force. This can be done by
dividing by 2 and seperating out 1

2mv
2 and ma’s.

mẋ2

2
V ′ + V V ′ +

mẋ2

2
mẍ+mẍV = 0

Pull V ′ terms together and mẍ terms together:

(
mẋ2

2
+ V )V ′ +mẍ(

mẋ2

2
+ V ) = 0

Therefore:

(
mẋ2

2
+ V )(mẍ+ V ′) = 0
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Now this looks like E · E′ = 0 because E = mẋ2

2 + V (x). That would mean

d

dt
E2 = 2EE′ = 0

Which allows us to see that E2 is a constant. If you look at t = 0 and the
starting energy of the particle, then you will notice that if E = 0 at t = 0 then
E = 0 for all other times. If E 6= 0 at t = 0 then E 6= 0 all other times while
mẍ+ V ′ = 0.

21. Two mass points of mass m1 and m2 are connected by a string passing
through a hole in a smooth table so that m1 rests on the table surface and
m2 hangs suspended. Assuming m2 moves only in a vertical line, what are the
generalized coordinates for the system? Write the Lagrange equations for the
system and, if possible, discuss the physical significance any of them might have.
Reduce the problem to a single second-order differential equation and obtain a
first integral of the equation. What is its physical significance? (Consider the
motion only until m1 reaches the hole.)

Answer:

The generalized coordinates for the system are θ, the angle m1 moves round
on the table, and r the length of the string from the hole to m1. The whole
motion of the system can be described by just these coordinates. To write the
Lagrangian, we will want the kinetic and potential energies.

T =
1
2
m2ṙ

2 +
1
2
m1(ṙ2 + r2θ̇2)

V = −m2g(l − r)

The kinetic energy is just the addition of both masses, while V is obtained
so that V = −mgl when r = 0 and so that V = 0 when r = l.

L = T − V =
1
2
(m2 +m1)ṙ2 +

1
2
m1r

2θ̇2 +m2g(l − r)

To find the Lagrangian equations or equations of motion, solve for each
component:

∂L

∂θ
= 0

∂L

∂θ̇
= m1r

2θ̇

d

dt

∂L

∂θ̇
=

d

dt
(m1r

2θ̇) = 0

d

dt

∂L

∂θ̇
= m1r

2θ̈ + 2m1rṙθ̇ = 0
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Thus
d

dt
(m1r

2θ̇) = m1r(rθ̈ + 2θ̇ṙ) = 0

and

∂L

∂r
= −m2g +m1rθ̇

2

∂L

∂ṙ
= (m2 +m1)ṙ

d

dt

∂L

∂ṙ
= (m2 +m1)r̈

Thus
m2g −m1rθ̇

2 + (m2 +m1)r̈ = 0

Therefore our equations of motion are:

d

dt
(m1r

2θ̇) = m1r(rθ̈ + 2θ̇ṙ) = 0

m2g −m1rθ̇
2 + (m2 +m1)r̈ = 0

See that m1r
2θ̇ is constant. It is angular momentum. Now the Lagrangian

can be put in terms of angular momentum. We have θ̇ = l/m1r
2.

L =
1
2
(m1 +m2)ṙ2 +

l2

2m1r2
−m2gr

The equation of motion

m2g −m1rθ̇
2 + (m2 +m1)r̈ = 0

Becomes

(m1 +m2)r̈ −
l2

m1r3
+m2g = 0

The problem has been reduced to a single second-order differential equation.
The next step is a nice one to notice. If you take the derivative of our new
Lagrangian you get our single second-order differential equation of motion.

d

dt
(
1
2
(m1 +m2)ṙ2 +

l2

2m1r2
−m2gr) = (m1 +m2)ṙr̈ −

l2

m1r3
ṙ −m2gṙ = 0

(m1 +m2)r̈ −
l2

m1r3
−m2g = 0

Thus the first integral of the equation is exactly the Lagrangian. As far as in-
terpreting this, I will venture to say the the Lagrangian is constant, the system is
closed, the energy is conversed, the linear and angular momentum are conserved.
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22. Obtain the Lagrangian and equations of motion for the double pendulum
illustrated in Fig 1.4, where the lengths of the pendula are l1 and l2 with corre-
sponding masses m1 and m2.

Answer:

Add the Lagrangian of the first mass to the Lagrangian of the second mass.
For the first mass:

T1 =
1
2
ml21θ̇

2
1

V1 = −m1gl1 cos θ1

Thus

L1 = T1 − V1 =
1
2
ml1θ̇

2
1 +mgl1 cos θ1

To find the Lagrangian for the second mass, use new coordinates:

x2 = l1 sin θ1 + l2 sin θ2

y2 = l1 cos θ1 + l2 cos θ2

Then it becomes easier to see the kinetic and potential energies:

T2 =
1
2
m2(ẋ2

2 + ẏ2
2)

V2 = −m2gy2

Take derivatives and then plug and chug:

T2 =
1
2
m2(l21 sin2 θ1θ̇

2
1 + 2l1l2 sin θ1 sin θ2θ̇1θ̇2 + l22 sin2 θ2θ̇

2
2

+l21 cos2 θ1θ̇21 + 2l1l2 cos θ1 cos θ2θ̇1θ̇2 + l22 cos2 θ2θ̇22)

T2 =
1
2
m2(l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2)

and

V2 = −mg(l1 cos θ1 + l2 cos θ2)

Thus

L2 = T2 − V2

=
1
2
m2(l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2) +m2g(l1 cos θ1 + l2 cos θ2)

Add L1 + L2 = L,
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L =
1
2
m2(l21θ̇

2
1+l

2
2θ̇

2
2+2l1l2 cos(θ1−θ2)θ̇1θ̇2)+m2g(l1 cos θ1+l2 cos θ2)+

1
2
ml1θ̇

2
1+m1gl1 cos θ1

Simplify even though it still is pretty messy:

L =
1
2
(m1+m2)l21θ̇

2
1+m2l1l2 cos(θ1−θ2)θ̇1θ̇2+

1
2
m2l

2
2θ̇

2
2+(m1+m2)gl1 cos θ1+m2gl2 cos θ2

This is the Lagrangian for the double pendulum. To find the equations of
motion, apply the usual Euler-Lagrangian equations and turn the crank:

For θ1:

∂L

∂θ1
= −m2l1l2 sin(θ1 − θ2)θ̇1θ̇2 − (m1 +m2)gl1 sin θ1

∂L

∂θ̇1
= (m1 +m2)l22θ̇1 +m2l1l2 cos(θ1 − θ2)θ̇2

d

dt
[
∂L

∂θ̇1
] = (m1 +m2)l21θ̈1 +m2l1l2 cos(θ1 − θ2)θ̈2 + θ̇2

d

dt
[m2l1l2 cos(θ1 − θ2)]

Let’s solve this annoying derivative term:

θ̇2
d

dt
[m2l1l2 cos(θ1 − θ2)] = θ̇2m2l2l1

d

dt
[cos θ1 cos θ2 + sin θ1 sin θ2]

Using a trig identity,

= θ̇2m2l2l1[− cos θ1 sin θ2θ̇2 − cos θ2 sin θ1θ̇1 + sin θ1 cos θ2θ̇2 + sin θ2 cos θ1θ̇1]

And then more trig identities to put it back together,

= θ̇2m2l2l1[θ̇2 sin(θ1 − θ2)− θ̇1 sin(θ1 − θ2)]

= θ̇22m2l2l1 sin(θ1 − θ2)−m2l2l1 sin(θ1 − θ2)θ̇1θ̇2

Plugging this term back into our Euler-Lagrangian formula, the second term
of this cancels its positive counterpart:

−∂L
∂θ

+
d

dt
[
∂L

∂θ̇1
] = (m1+m2)gl1 sin θ1+(m1+m2)l22θ̈1+m2l1l2 cos(θ1−θ2)θ̈2+θ̇22m2l2l1 sin(θ1−θ2)

Finally, cancel out a l1 and set to zero for our first equation of motion:

(m1 +m2)g sin θ1 +(m1 +m2)l1θ̈1 +m2l2 cos(θ1−θ2)θ̈2 + θ̇22m2l2 sin(θ1−θ2) = 0

Now for θ2:
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∂L

∂θ2
= m2l1l2 sin(θ1 − θ2)θ̇1θ̇2 −m2gl2 sin θ2

∂L

∂θ̇2
= m2l1l2 cos(θ1 − θ2)θ̇1 +m2l

2
2θ̇2

d

dt

∂L

∂θ̇2
= m2l

2
2θ̈2 + θ̈1m2l2l1 cos(θ1 − θ2) + θ̇1[

d

dt
(m2l2l1 cos(θ1 − θ2))]

Fortunately this is the same derivative term as before, so we can cut to the
chase:

= m2l
2
2θ̈2 + θ̈1m2l2l1 cos(θ1 − θ2) +m2l1l2θ̇1[θ̇2 sin(θ1 − θ2)− θ̇1 sin(θ1 − θ2)]

Thus

− ∂L

∂θ2
+
d

dt

∂L

∂θ̇2
= +m2gl2 sin θ2+m2l

2
2θ̈2+θ̈1m2l1l2 cos(θ1−θ2)−θ̇21m2l1l2 sin(θ1−θ2)

Cancel out an l2 this time, set to zero, and we have our second equation of
motion:

m2g sin θ2 +m2l2θ̈2 + θ̈1m2l1 cos(θ1 − θ2)− θ̇21m2l1 sin(θ1 − θ2) = 0

Both of the equations of motion together along with the Lagrangian:

L =
1
2
(m1+m2)l21θ̇

2
1+m2l1l2 cos(θ1−θ2)θ̇1θ̇2+

1
2
m2l

2
2θ̇

2
2+(m1+m2)gl1 cos θ1+m2gl2 cos θ2

(m1 +m2)g sin θ1 +(m1 +m2)l1θ̈1 +m2l2 cos(θ1−θ2)θ̈2 + θ̇22m2l2 sin(θ1−θ2) = 0

m2g sin θ2 +m2l2θ̈2 + θ̈1m2l1 cos(θ1 − θ2)− θ̇21m2l1 sin(θ1 − θ2) = 0

23. Obtain the equation of motion for a particle falling vertically under the
influence of gravity when frictional forces obtainable from a dissipation function
1
2kv

2 are present. Integrate the equation to obtain the velocity as a function
of time and show that the maximum possible velocity for a fall from rest is
v +mg/k.

Answer:

Work in one dimension, and use the most simple Lagrangian possible:

L =
1
2
mż2 −mgz

With dissipation function:
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F =
1
2
kż2

The Lagrangian formulation is now:

d

dt

∂L

∂ż
− ∂L

∂z
+
∂F

∂ż
= 0

Plug and chug and get:

mz̈ −mg + kż = 0

Note that at terminal velocity there is no total force acting on you, gravity
matches force due to friction, so mz̈ = 0:

mg = kż → ż =
mg

k

But lets integrate like the problem asks. Let f = ż− mg
k and substitute into

the equation of motion:

mz̈ −mg + kż = 0

mz̈

k
− mg

k
+ ż = 0

mz̈

k
+ f = 0

Note that f ′ = z̈. Thus

mf ′

k
+ f = 0

f ′

f
= − k

m

ln f = − k

m
t+ C

f = Ce−
k
m t

Therefore

ż − mg

k
= Ce−

k
m t

Plugging in the boundary conditions, that at t = 0, ż = 0, we solve for C

−mg
k

= C

Thus

ż − mg

k
= −mg

k
e−

k
m t
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and with t→∞ we have finally

ż =
mg

k

24. A spring of rest length La ( no tension ) is connected to a support at one end
and has a mass M attached at the other. Neglect the mass of the spring, the
dimension of the mass M , and assume that the motion is confined to a vertical
plane. Also, assume that the spring only stretches without bending but it can
swing in the plane.

1. Using the angular displacement of the mass from the vertical and the
length that the string has stretched from its rest length (hanging with the
mass m), find Lagrange’s equations.

2. Solve these equations fro small stretching and angular displacements.

3. Solve the equations in part (1) to the next order in both stretching and
angular displacement. This part is amenable to hand calculations. Us-
ing some reasonable assumptions about the spring constant, the mass,
and the rest length, discuss the motion. Is a resonance likely under the
assumptions stated in the problem?

4. (For analytic computer programs.) Consider the spring to have a total
mass m << M . Neglecting the bending of the spring, set up Lagrange’s
equations correctly to first order in m and the angular and linear displace-
ments.

5. (For numerical computer analysis.) Make sets of reasonable assumptions
of the constants in part (1) and make a single plot of the two coordinates
as functions of time.

Answer:

This is a spring-pendulum. It’s kinetic energy is due to translation only.

T =
1
2
m(ṙ2 + (rθ̇)2)

The more general form of v is derived in problem 15 if this step was not
clear. Just disregard φ direction. Here r signifies the total length of the spring,
from support to mass at any time.

As in problem 22, the potential has a term dependent on gravity, but it also
has the potential of your normal spring.

V = −mgr cos θ +
1
2
k(r − La)2

Note that the potential due to gravity depends on the total length of the
spring, while the potential due to the spring is only dependent on the stretching
from its natural length. Solving for the Lagrangian:
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L = T − V =
1
2
m(ṙ2 + (rθ̇)2) +mgr cos θ − 1

2
k(r − La)2

Lets solve for Lagrange’s equations now.

For r:
∂L

∂r
= mg cos θ +mrθ̇2 − k(r − La)

d

dt

∂L

∂ṙ
= mr̈

For θ:
∂L

∂θ
= −mgr sin θ

d

dt

∂L

∂θ̇
=

d

dt
(mr2θ̇) = mr2θ̈ + 2mrṙθ̇

Bring all the pieces together to form the equations of motion:

d

dt

∂L

∂ṙ
− ∂L

∂r
= mr̈ −mrθ̇2 + k(r − La)−mg cos θ = 0

d

dt

∂L

∂θ̇
− ∂L

∂θ
= mr2θ̈ + 2mrṙθ̇ +mgr sin θ = 0

For part b, we are to solve these equations for small stretching and angular
displacements. Simplify the equations above by canceling out m’s, r’s and
substituting θ for sin θ, and 1 for cos θ.

r̈ − rθ̇2 +
k

m
(r − La)− g = 0

θ̈ +
2ṙ
r
θ̇ +

g

r
θ = 0

Solve the first equation, for r, with the initial condition that θ0 = 0, θ̇0 = 0,
r0 = 0 and ṙ0 = 0:

r = La +
mg

k

Solve the second equation, for θ, with the same initial conditions:

θ = 0

This is the solution of the Lagrangian equations that make the generalized
force identically zero. To solve the next order, change variables to measure
deviation from equilibrium.

x = r − (La +
mg

k
), θ

Substitute the variables, keep only terms to 1st order in x and θ and the
solution is:
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ẍ = − k

m
x θ̈ = − g

La + m
k g

θ

In terms of the original coordinates r and θ, the solutions to these are:

r = La +
mg

k
+A cos(

√
k

m
t+ φ)

θ = B cos(

√
kg

kLa +mg
t+ φ′)

The phase angles, φ and φ′, and amplitudes A and B are constants of inte-
gration and fixed by the initial conditions. Resonance is very unlikely with this
system. The spring pendulum is known for its nonlinearity and studies in chaos
theory.
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