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Michael Good

April 25, 2006

Problem 3

Taking Robertson-Walker metric

ds2 = −dt2 + R(t)2
(

dr2

1− kr2
+ r2dΩ2

)
with k = +1, 0,−1 and R(t) the cosmological scale. Use Gµν = 8πTµν and
Tµν

;ν = 0 to obtain the Friedmann equation

Ṙ2 + k =
8π

3
ρR2

and the equation of energy conservation

d

dR
(ρR3) = −3pR2

assuming a perfect fluid stress enrgy tensor where ρ(t) is the matter total
energy density and p is the isotropic pressure.

Specialize to the case of a flat universe k = 0 and compute the resulting time
dependence of the scale factor when the universe is filled with dust p = 0 and
in the case where the universe is filled with radiation p = ρ/3.

Solution:

Writing Einstein’s equation in the form

Rµν = 8π(Tµν −
1
2
gµνT )

We see that we need the Ricci tensor and the stress-energy tensor for a
perfect fluid. The Ricci tensor involves calculating the Christoffel symbols from
the metric which is a tedious but easy calculation. The stress-energy tensor
can be found more quickly. As our fluid is perfect, the fluid may be at rest in
comoving coordinates with a 4-velocity of Uµ = (1, 0, 0, 0) and the stress-energy
tensor Tµν = (ρ + p)UµUν + pgµν is, with an index raised:
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Tµ
ν = diag(−ρ, p, p, p)

with a trace of

T = −ρ + 3p

We will remember this for later. For now, lets focus on the Ricci tensor. To
find the Christoffel symbols, simply use:

Γσ
µν =

1
2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

Lets explicitly calculate a few. Try Γ3
03.

Γ3
03 =

1
2
g3ρ(∂0g3ρ + ∂3gρ0 − ∂ρg03)

This is just the first term and only with ρ = 3 , as the others vanish

Γ3
03 =

1
2
g33∂0g33 =

1
2R2

(∂tR
2) =

Ṙ

R

Lets try another:

Γ0
22 =

1
2
g00(−∂0g22) =

1
2
∂t(R2r2) =

r2

2
(∂tR

2) = r2RṘ

The rest follow in exactly the same way. Here are all of them:

Γ0
11 = RṘ/(1− kr2) Γ0

22 = RṘr2 Γ0
33 = RṘr2 sin2 θ

Γ1
01 = Ṙ/R Γ1

11 = kr/(1− kr2) Γ1
22 = −r(1− kr2)

Γ1
33 = −r(1− kr2) sin2 θ Γ2

12,Γ
3
13 = 1/r Γ3

23 = cot θ

Γ2
02 = Ṙ/R Γ3

03 = Ṙ/R Γ2
33 = − sin θ cos θ

With our Christoffel symbols in hand, we are in a position to calculate the
Ricci tensor from:

Rσν = ∂λΓλ
νσ − ∂νΓλ

λσ + Γλ
λµΓµ

νσ − Γλ
νµΓµ

λσ

An important shortcut is that because our space is isotropic, we only care
about two equations from the Ricci tensor, that is the tt and one of the space-
space ones, I’ll go with just 22. I’ll explicitly go through the tt one.

R00 = −Γσ
0σ,0 − Γρ

0σΓσ
ρ0

Plugging in the appropriate Γ’s we get:

R00 = −3∂t(
Ṙ

R
)− 3(

Ṙ

R
)2 = −3

R̈

R
+ 3

Ṙ

R2
Ṙ− 3(

Ṙ

R2
)2 = −3

R̈

R

The R22 works exactly the same way and is:
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R22 = r2(RR̈ + 2Ṙ2 + 2k)

Remember the include all the contraction terms, as it can be easy to miss
some. Now, back to our Einstein field equations. We still have

Rµν = 8π(Tµν −
1
2
gµνT )

and lets see what they give us for our tt term.

R00 = 8π(T00 −
1
2
g00T )

Since T00 = ρ and T = −ρ+3p and bringing R00 down from above, we have:

−3
R̈

R
= 8π(ρ +

1
2
(−ρ + 3p)) = 4π(ρ + 3p) (1)

So much for that. How about our 22 term? Bringing R22 down from above
and using g22 = R2r2, T22 = g22p = R2r2p, we get

r2(RR̈ + 2Ṙ2 + 2k) = 8π(R2r2p− 1
2
R2r2(3p− ρ))

Take out the silly r2, divide by R and collect the ρ and p’s.

R̈

R
+ 2(

Ṙ

R
)2 + 2

k

R2
= 4π(ρ− p) (2)

Combine equations (1) and (2) to get rid of the second derivative.

−4π

3
(ρ + 3p) + 2(

Ṙ

R
)2 + 2

k

R2
= 4π(ρ− p)

Simplified, the p’s cancel:

2(
Ṙ

R
)2 + 2

k

R2
=

16π

3
ρ

Ṙ2 + k = 8π
3 ρR2 (3)

This is the Friedmann equation. As for the equation of energy conservation,
use this trick:

1
2

d

dR
Ṙ2 = R̈ (4)

You can see that this checks because

Ṙ
dṘ

dR
=

dR

dt

dṘ

dR
= R̈

With this, we rearrange equation (1):
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R̈ = −4
3
π(ρ + 3p)R

and use our trick, equation (4).

1
2

d

dR
Ṙ2 = −4

3
π(ρ + 3p)R

and throw in Ṙ from equation (2):

1
2

d

dR
(
8π

3
ρR2 − k) = −4

3
π(ρ + 3p)R

This is

d

dR
(ρR2) = −(ρ + 3p)R

We can move the first term on the right side over the left hand side and
multiply the whole equation by R:

R
d

dR
(ρR2) + ρR2 = −3pR2

Note that this is just the product rule, so bring it together and we have:

d
dR (ρR3) = −3pR2 (5)

This is the energy conservation equation.

Specializing to the case of a flat universe, I am now interested in the evolution
of the scale factor. We numerically integrate the Friedmann equation to find the
evolution of the scale factor. The types of solutions for the different parameters
may be examined in this way. If we imagine that all the different components
of the energy density ρi, evolve as power laws and we have ρi = ρi0R

−ni . The
behavior of sources are: matter (ni = 3), radiation (ni = 4), curvature (ni = 2)
and vacuum (ni = 0). So we have

ρ ∝ R−n

In flat space, k = 0 and the Friedmann equation gives

Ṙ2 ∝ ρR2

Ṙ ∝ R−nR2 = R1−n/2

dR

R1−n/2
∝ dt

The dependence on time, for when the universe is filled with dust (p = 0),
(n = 3), can be found by
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R1/2dR ∝ dt

which, integrated is:

R ∝ t2/3 for p = 0 (6)

For the case of a universe filled with radiation (p = ρ
3 ), (n = 4), we can find

time dependence by:

RdR ∝ dt

R ∝ t1/2 for p = ρ
3 (7)

We would only consider flat universes dominated by a single source, or com-
pletely empty universes with spatial curvature because we are including spatial
curvature as an effective energy source. Generally the relationship goes like:

R ∝ t2/n (8)

for (ρ ∝ a−n).
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Problem 4

Work out the equations of stellar equilbrium for relativistic spherically symmet-
ric star. Take the metric to have “standard” form in spherical symmetry.

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2

Assume the star is described by a perfect fluid

Tµν = (ρ + p)UµUν + pgµν

with ρ the total energy density, p the pressure, and Uµ the four velocity, which
satsfies gµνUµUν = −1. In this coordinate system the fluid in the star will be
at rest.

Use Einstein equations, Gµν = 8πTµν and the equations of motion of the matter,
hydrostatic equilibrium, Tµν

;ν = 0 to find the differential equations for the
metric and the pressure gradient. Show

A(r) =
1

1− 2M(r)
r

with

M(r) = 4π

∫ r

0

dr′r′2ρ(r′)

and

1
B

dB

dr
= − 2

ρ + p

dp

dr

and the Oppenheimer-Volkoff equation

dp

dr
= − (ρ + p)(M(r) + 4πr3p)

r2 − 2M(r)r

Solution:

Armed with Einstein’s field equations:

Gµν = Rµν −
1
2
Rgµν = 8πTµν

we see we must now solve for the Ricci tensor, the Ricci scalar, and the
stress-energy tensor. As before, the stress energy tensor describes a perfect
fluid only this time we have a different and more general form for the metric.
The stress energy tensor assumes the form:
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Tµν =


Bρ

Ap
r2p

r2 sin2 θ p


We are good to go on the right hand side of Einstein’s equations, now let’s

look at the left hand side. From the metric you’ve got to determine the Christof-
fel symbols. Here is Γt

tr:

Γt
tr =

1
2
gtρ(∂tgrρ + ∂rgρt − ∂ρgtr)

Only the first term survives

Γt
tr =

1
2
gtt∂rgtt =

1
2B

∂rB

Calculating all the Christoffel symbols as in Problem 3, I obtain:

Γt
tr = 1

2∂rlnB Γr
tt = B

2A∂rlnB Γr
rr = 1

2∂rlnA

Γθ
rθ = 1

r Γr
θθ = −r

A Γφ
rφ = 1

r

Γr
φφ = −r

A sin2 θ Γθ
φφ = − sin θ cos θ Γφ

θφ = cot θ

From here I solve for the Ricci tensor using:

Rσν = ∂λΓλ
νσ − ∂νΓλ

λσ + Γλ
λµΓµ

νσ − Γλ
νµΓµ

λσ

Allow me to solve for the Gtt component of Einstein’s equations. My Ricci
tensor is:

Rtt =
B

A
[
1
2
∂2

r lnB + (
1
2
∂rlnB)2 − 1

2
∂rlnB

1
2
∂rlnA +

1
r
∂rlnB]

My Ricci scalar is:

R = − 2
A

[
1
2
∂2

r lnB+(
1
2
∂rlnB)2−1

2
∂rlnB

1
2
∂rlnA+

1
r
(∂rlnB−∂rlnA)+

1
r2

(1−A)]

Solving for − 1
2Rgtt gives me my Gtt

Gtt = Rtt −
1
2
Rgtt =

B

A
[
1
r
∂rlnA− 1

r2
− A

r2
]

Setting this equal to 8πTtt with Ttt = Bρ, yields a final equation for the tt
component:

1
Ar2

(r∂rlnA− 1 + A) = 8πρ (9)

This is handy as it has only A and ρ in it. At this point I will replace A by
a new function M(r) which I will just denote as M(r) = m:
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m =
1
2
(r − r

A
)

This is equivalent to

A = [1− 2m
r ]−1 (10)

Does this check? Plugging my new function into my tt equation yields:

1
r2

[1− 2m

r
][−r∂r(ln(1− 2m

r
)− 1 + (1− 2m

r
)−1] = 8πρ

1
r2

[1− 2m

r
][−r(1− 2m

r
)−1∂r(−

2m

r
)− 1 + (1− 2m

r
)−1] = 8πρ

−1
r
∂r(−

2m

r
)− 1

r2
(1− 2m

r
) +

1
r2

= 8πρ

−1
r
[2mr−2 − r−12

dm

dr
] +

2m

r3
= 8πρ

−2m

r3
+

2
r2

dm

dr
+

2m

r3
= 8πρ

This is

dm

dr
= 4πρr2

Integrate and

m(r) = 4π
∫ r

0
ρ(r′)r′2dr′ (11)

it checks.

My Rrr piece is

Rrr = −1
2
∂2

r lnB − (
1
2
∂rlnB)2 +

1
2
∂rlnB

1
2
∂rlnA +

1
r
∂rlnA

Using the same Ricci scalar above, I solve for

Grr = Rrr −
1
2
grrR

which gives me

Grr =
1
r2

(r∂rlnB + 1−A)

Setting this equal to 8πTrr = 8πρA leaves us with another grand equation:

1
r2

(r∂rlnB + 1−A) = 8πρA
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1
B

dB

dr
= 8πρrA− 1

r
+

A

r
(12)

which is the rr component. Plugging in our A we get

1
B

dB

dr
=

8πρr2

r − 2m
− 1

r
+

1
r − 2m

Bring together like terms, and multiply the second term on the right hand
side by 1 = A/A

1
B

dB

dr
=

8πρr3 + 2m

r2 − 2mr
(13)

Save this for latter, as we’ll need this modified rr term to get the Oppenheimer-
Volkoff equation. At this point I want to use the equations of motion of the
matter to solve for 1

B
dB
dr . Evaluating Tµν

;ν = 0 is most easily done by remem-
bering Euler’s equation,

(ρ + p)Uµ;νUν = −p,µ − p,νUνUµ

The only part that contributes is ν = r so we have

−dp

dr
= (ρ + p)Ur;νUν + 0

−dp

dr
= −(ρ + p)Γλ

rνUλUν = −(ρ + p)Γt
rtUtU

t = (ρ + p)
1
2
∂rlnB

So we’ve got

−dp

dr
=

(ρ + p)
2

1
B

dB

dr

This is

1
B

dB
dr = − 2

ρ+p
dp
dr (14)

Take equation (13) and (14) and combine:

− 2
ρ + p

dp

dr
=

8πρr3 + 2m

r2 − 2mr

Isolate the pressure gradient, noting that m = M(r) still.

dp
dr = − (ρ+p)(4πr3p+m)

r2−2mr (15)

This is the Oppenheimer- Volkoff equation, or just simply, the equation of
hydrostatic equilibrium.
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