
Homework 12: # 10.13, 10.27, Cylinder

Michael Good

Nov 28, 2004

10.13
A particle moves in periodic motion in one dimension under the influence of a
potential V (x) = F |x|, where F is a constant. Using action-angle variables, find
the period of the motion as a function of the particle’s energy.

Solution:

Define the Hamiltonian of the particle

H ≡ E =
p2

2m
+ F |q|

Using the action variable definition, which is Goldstein’s (10.82):

J =
∮

p dq

we have

J =
∮ √

2m(E − Fq) dq

For F is greater than zero, we have only the first quadrant, integrated from
q = 0 to q = E/F (where p = 0). Multiply this by 4 for all of phase space and
our action variable J becomes

J = 4
∫ E/F

0

√
2m

√
E − Fq dq

A lovely u-substitution helps out nicely here.

u = E − Fq → du = −F dq

J = 4
∫ 0

E

√
2mu1/2 1

−F
du

J =
4
√

2m

F

∫ E

0

u1/2 du =
8
√

2m

3F
E3/2
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Goldstein’s (10.95) may help us remember that

∂H

∂J
= ν

and because E = H and τ = 1/ν,

τ =
∂J

∂E

This is

τ =
∂

∂E
[
8
√

2m

3F
E3/2]

And our period is

τ =
4
√

2mE

F

10.27
Describe the phenomenon of small radial oscillations about steady circular mo-
tion in a central force potential as a one-dimensional problem in the action-angle
formalism. With a suitable Taylor series expansion of the potential, find the pe-
riod of the small oscillations. Express the motion in terms of J and its conjugate
angle variable.

Solution:

As a reminder, Taylor series go like

f(x) = f(a) + (x− a)f ′(a) +
1
2!

(x− a)2f
′′
(a) + ...

Lets expand around some r0 for our potential,

U(r) = U(r0) + (r − r0)U ′(r0) +
1
2
(r − r0)2U

′′
(r0) + ...

Using the form of the Hamiltonian, involving two degrees of freedom, in
polar coordinates,(eq’n 10.65) we have

H =
1

2m
(p2

r +
l2

r2
) + V (r)

Defining a new equivalent potential, U(r) the Hamiltonian becomes

H =
1

2m
p2

r + U(r)

The r0 from above will be some minimum of U(r),

U ′(r0) = − l2

mr3
0

+ V ′(r0) = 0
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The second derivative is the only contribution

U ′′ =
3l2

mr4
0

+ V ′′(r0) = k

where k > 0 because we are at a minimum that is concave up. If there is a
small oscillation about circular motion we may let

r = r0 + λ

where λ will be very small compared to r0. Thus our Hamiltonian becomes

H =
1

2m
p2

r + U(r0 + λ)

This is

H =
1

2m
p2

r + U(r0) +
1
2
(r − r0)2U ′′(r0)

H =
1

2m
p2

r + U(r0) +
1
2
λ2U ′′(r0) = E

If we use the small energy ε defined as

ε = E − U(r0)

We see

ε =
1

2m
p2

r +
1
2
λ2k

This energy is the effect on the frequency, so following section 10.6

ε =
Jω

2π

We have for the action variable

J = 2πε

√
m

k

and a period

τ =
∂J

∂ε
= 2π

√
m

k

with motion given by

r = r0 +

√
J

πmω
sin 2πω

pr =

√
mJω

π
cos 2πω
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A particle is constrained to the edge of a cylinder. It is released and bounces
around the perimeter. Find the two frequencies of its motion using the action
angle variable formulation.

Solution:

Trivially, we know the frequency around the cylinder to be its angular speed
divided by 2π because it goes 2π radians in one revolution.

νθ =
θ̇

2π

And also simply, we may find the frequency of its up and down bouncing
through Newtonian’s equation of motion.

h =
1
2
gt2

t =

√
2h

g

Multiply this by 2 because the period will be measured from a point on the
bottom of the cylinder to when it next hits the bottom of the cylinder again.
The time it takes to fall is the same time it takes to bounce up, by symmetry.

T = 2

√
2h

g
→ νz =

1
2

√
g

2h

To derive these frequencies via the action-angle formulation we first start by
writing down the Hamiltonian for the particle.

H ≡ E = mgz +
p2

z

2m
+

p2
θ

2mR2

Noting that pθ is constant because there is no external forces on the system,
and because θ does not appear in the Hamiltonian, therefore it is cyclic and its
conjugate momentum is constant.

pθ = mθ̇R2

we may write

Jθ = 2πpθ

based on Goldstein’s (10.101), and his very fine explanation. Breaking the
energy into two parts, one for θ and one for z, we may express the Eθ part as
a function of Jθ.

Eθ =
p2

θ

2mR2
=

J2
θ

4π22mR2
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The frequency is

νθ =
∂Eθ

∂Jθ
=

Jθ

4π2mR2

νθ =
Jθ

4π2mR2
=

2πpθ

4π2mR2
=

pθ

2πmR2
=

mθ̇R2

2πmR2

Thus we have

νθ =
θ̇

2π

The second part is a bit more involved algebraically. Expressing the energy
for z:

Ez = mgz +
p2

z

2m

Solving for pz and plugging into

J =
∮

p dq

we get

Jz =
√

2m

∮
(Ez −mgz)1/2 dz

we can do this closed integral by integrating from 0 to h and multiplying by
2.

Jz = 2
√

2m
2
3
(Ez −mgz)3/2(

−1
mg

)
∣∣∣∣h
0

The original energy given to it in the z direction will be mgh, its potential
energy when released from rest. Thus the first part of this evaluated integral is
zero. Only the second part remains:

Jz =
4
3

√
2m

1
mg

E3/2
z

Solved in terms of Ez

Ez = (
3
4
g

√
m

2
Jz)2/3

The frequency is

νz =
∂Ez

∂Jz
= (

2
3
(
3
4
g

√
m

2
)2/3)

1
J1/3
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All we have to do now is plug what Jz is into this expression and simplify
the algebra. As you may already see there are many different steps to take to
simplify, I’ll show one.

νz = (
2
3
(
3
4
g

√
m

2
)2/3)

1

[ 4
3g

√
2
m (mgh)3/2]1/3

Now we have a wonderful mess. Lets gather the numbers, and the constants
to one side

νz =
2
3 ( 3

4 )2/3 1
21/3

( 4
3 )1/321/6

g2/3m1/3g1/3m1/6

m1/2g1/2h1/2

You may see, with some careful observation, that the m’s cancel, and the
constant part becomes

g1/2

h1/2

The number part simplifies down to

1
2
√

2

Thus we have

νz =
1

2
√

2

√
g

h
=

1
2

√
g

2h

as we were looking for from Newton’s trivial method. Yay! Our two fre-
quencies together

νθ =
θ̇

2π

νz =
1
2

√
g

2h

The condition for the same path to be retraced is that the ratio of the fre-
quencies to be a rational number. This is explained via closed Lissajous figures
and two commensurate expressions at the bottom of page 462 in Goldstein.
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