
Homework 4: # 2.18, 2.21, 3.13, 3.14, 3.20

Michael Good

Sept 20, 2004

2.18 A point mass is constrained to move on a massless hoop of radius a fixed
in a vertical plane that rotates about its vertical symmetry axis with constant
angular speed ω. Obtain the Lagrange equations of motion assuming the only
external forces arise from gravity. What are the constants of motion? Show
that if ω is greater than a critical value ω0, there can be a solution in which
the particle remains stationary on the hoop at a point other than the bottom,
but if ω < ω0, the only stationary point for the particle is at the bottom of the
hoop. What is the value of ω0?

Answer:

To obtain the equations of motion, we need to find the Lagrangian. We only
need one generalized coordinate, because the radius of the hoop is constant,
and the point mass is constrained to this radius, while the angular velocity, w
is constant as well.

L =
1
2
ma2(θ̇2 + ω2 sin2 θ)−mga cos θ

Where the kinetic energy is found by spherical symmetry, and the potential
energy is considered negative at the bottom of the hoop, and zero where the
vertical is at the center of the hoop. My θ is the angle from the z-axis, and a is
the radius.
The equations of motion are then:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0

ma2θ̈ = ma2ω2 sin θ cos θ + mga sin θ

We see that the Lagrangian does not explicitly depend on time therefore the
energy function, h, is conserved (Goldstein page 61).

h = θ̇
∂L

∂θ̇
− L

h = θ̇ma2θ̇ − 1
2
ma2(θ̇2 + ω2 sin2 θ)−mga cos θ
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This simplifies to:

h =
1
2
ma2θ̇ − (

1
2
ma2ω2 sin2 θ −mga cos θ)

Because the ‘energy function’ has an identical value to the Hamiltonian, the
effective potential is the second term,

Veff = mga cos θ − 1
2
ma2ω2 sin2 θ

The partial of Veff with respect to θ set equal to zero should give us a
stationary point.

∂Veff

∂θ
= mga sin θ + ma2ω2 sin θ cos θ = 0

ma sin θ(g + aω2 cos θ) = 0

This yields three values for θ to obtain a stationary point,

θ = 0 θ = π θ = arccos(− g

aω2
)

At the top, the bottom, and some angle that suggests a critical value of ω.

ω0 =
√

g

a

The top of the hoop is unstable, but at the bottom we have a different story.
If I set ω = ω0 and graph the potential, the only stable minimum is at θ = π, the
bottom. Therefore anything ω < ω0, θ = π is stable, and is the only stationary
point for the particle.

If we speed up this hoop, ω > ω0, our angle

θ = arccos(−ω2
0

ω2
)

is stable and θ = π becomes unstable. So the point mass moves up the hoop,
to a nice place where it is swung around and maintains a stationary orbit.
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2.21 A carriage runs along rails on a rigid beam, as shown in the figure below.
The carriage is attached to one end of a spring of equilibrium length r0 and force
constant k, whose other end is fixed on the beam. On the carriage, another set
of rails is perpendicular to the first along which a particle of mass m moves,
held by a spring fixed on the beam, of force constant k and zero equilibrium
length. Beam, rails, springs, and carriage are assumed to have zero mass. The
whole system is forced to move in a plane about the point of attachment of the
first spring, with a constant angular speed ω. The length of the second spring
is at all times considered small compared to r0.

• What is the energy of the system? Is it conserved?

• Using generalized coordinates in the laboratory system, what is the Jacobi
integral for the system? Is it conserved?

• In terms of the generalized coordinates relative to a system rotating with
the angular speed ω, what is the Lagrangian? What is the Jacobi integral?
Is it conserved? Discuss the relationship between the two Jacobi integrals.

Answer:

Energy of the system is found by the addition of kinetic and potential parts.
The kinetic, in the lab frame, (x, y), using Cartesian coordinates is

T (x, y) =
1
2
m(ẋ2 + ẏ2)

Potential energy is harder to write in lab frame. In the rotating frame, the
system looks stationary, and its potential energy is easy to write down. I’ll use
(r, l) to denote the rotating frame coordinates. The potential, in the rotating
frame is

V (r, l) =
1
2
k(r2 + l2)

Where r is simply the distance stretched from equilibrium for the large
spring. Since the small spring has zero equilbrium length, then the potential
energy for it is just 1

2kl2.

The energy needs to be written down fully in one frame or the other, so
I’ll need a pair of transformation equations relating the two frames. That is,
relating (x, y) to (r, l). Solving for them, by drawing a diagram, yields

x = (r0 + r) cos ωt− l sinωt

y = (r0 + r) sinωt + l cos ωt

Manipulating these so I may find r(x, y) and l(x, y) so as to write the stub-
born potential energy in terms of the lab frame is done with some algebra.
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Multiplying x by cos ωt and y by sinωt, adding the two equations and solving
for r yields

r = x cos ωt + y sinωt− r0

Multiplying x by sin and y by cos, adding and solving for l yields

l = −x sinωt + y cos ωt

Plugging these values into the potential energy to express it in terms of the
lab frame leaves us with

E(x, y) =
1
2
m(ẋ2 + ẏ2) +

1
2
k((x cos ωt + y sinωt− r0)2 + (−x sinωt + y cos ωt)2)

This energy is explicitly dependent on time. Thus it is NOT conserved in
the lab frame. E(x, y) is not conserved.

In the rotating frame this may be a different story. To find E(r, l) we are
lucky to have an easy potential energy term, but now our kinetic energy is giving
us problems. We need

E(r, l) = T (r, l) +
1
2
k(l2 + r2)

Where in the laboratory frame, T (x, y) = 1
2 (ẋ2 + ẏ2). Taking derivatives of

x and y yield

ẋ = −ω(r0 + r) sinωt + ṙ cos ωt− lω cos ωt− l̇ sinωt

ẏ = ω(r0 + r) cos ωt + ṙ sinωt− lω sinωt− l̇ cos ωt

Squaring both and adding them yields

ẋ2 + ẏ2 = ω2(r0 + r)2ṙ2 + l2ω2 + l̇2 + C.T.

Where cross terms, C.T. are

C.T. = 2ω(r0 + r)l̇ − 2ṙlω

For kinetic energy we know have

T (r, l) =
1
2
m(ω2(r0 + r)2ṙ2 + l2ω2 + l̇2 + 2ω(r0 + r)l̇ − 2ṙlω)

Collecting terms

T (r, l) =
1
2
m(ω2(r0 + r +

l̇

ω
)2 + (ṙ − lω)2)

Thus

4



E(r, l) =
1
2
m(ω2(r0 + r +

l̇

ω
)2 + (ṙ − lω)2) +

1
2
k(l2 + r2)

This has no explicit time dependence, therefore energy in the rotating frame
is conserved. E(r, l) is conserved.

In the laboratory frame, the Lagrangian is just T (x, y)− V (x, y).

L(x, y) =
1
2
m(ẋ2 + ẏ2)− V (x, y)

Where

V (x, y) =
1
2
k((x cos ωt + y sinωt− r0)2 + (−x sinωt + y cos ωt)2)

The Jacobi integral, or energy function is

h =
∑

i

q̇i
∂L

∂q̇i
− L

We have

h = ẋ
∂L

∂ẋ
+ ẏ

∂L

∂ẏ
− L(x, y)

h = ẋmẋ + ẏmẏ − 1
2
m(ẋ2 + ẏ2) + V (x, y)

Notice that V (x, y) does not have any dependence on ẋ or ẏ. Bringing it
together

h =
1
2
m(ẋ2 + ẏ2) +

1
2
k((x cos ωt + y sinωt− r0)2 + (−x sinωt + y cos ωt)2)

This is equal to the energy.

h(x, y) = E(x, y)

Because it is dependent on time,

d

dt
h = −∂L

∂t
6= 0

we know h(x, y) is not conserved in the lab frame.

For the rotating frame, the Lagrangian is

L(r, l) = T (r, l)− 1
2
k(r2 + l2)

5



Where

T (r, l) =
1
2
m(ω2(r0 + r +

l̇

ω
)2 + (ṙ − lω)2)

The energy function, or Jacobi integral is

h(r, l) = ṙ
∂L

∂ṙ
+ l̇

∂L

∂l̇
− L(r, l)

h(r, l) = ṙm(ṙ − lω) + l̇mω(r0 + r +
l̇

ω
)− L(r, l)

Collecting terms, with some heavy algebra

h = (ṙ−lω)(mṙ−1
2
m(ṙ−lω))+(r0+r+

l̇

ω
)(mωl̇−1

2
mω2(r0+r+

l̇

ω
))+

1
2
k(l2+r2)

h = (ṙ− lω)(
mṙ

2
+

1
2
mlω) + (r0 + r +

l̇

ω
)(

1
2
mωl̇− 1

2
mω2(r0 + r)) +

1
2
k(l2 + r2)

More algebraic manipulation in order to get terms that look like kinetic
energy,

h =
1
2
m(ṙ2+l̇2)+

1
2
k(l2+r2)+

1
2
[ṙmlω−lωmṙ−ml2ω2+(r0+r)mωl̇−mω2(r0+r)2−mωl̇(r0+r)]

Yields

h(r, l) =
1
2
m(ṙ2 + l̇2) +

1
2
k(l2 + r2)− 1

2
mω2(l2 + (r0 + r)2)

This has no time dependence, and this nice way of writing it reveals an
energy term of rotation in the lab frame that can’t be seen in the rotating
frame. It is of the from E = − 1

2Iω2.

d

dt
h = −∂L

∂t
= 0

We have h(r, l) conserved in the rotating frame.

6



3.13

• Show that if a particle describes a circular orbit under the influence of
an attractive central force directed toward a point on the circle, then the
force varies as the inverse-fifth power of the distance.

• Show that for orbit described the total energy of the particle is zero.

• Find the period of the motion.

• Find ẋ, ẏ and v as a function of angle around the circle and show that
all three quantities are infinite as the particle goes through the center of
force.

Answer:

Using the differential equation of the orbit, equation (3.34) in Goldstein,

d2

dθ2
u + u = −m

l2
d

du
V (

1
u

)

Where r = 1/u and with the origin at a point on the circle, a triangle drawn
with r being the distance the mass is away from the origin will reveal

r = 2R cos θ

u =
1

2R cos θ

Plugging this in and taking the derivative twice,

d

dθ
u =

1
2R

[− cos−2 θ(− sin θ)] =
sin θ

2R cos2 θ

The derivative of this is

d

dθ

sin θ

2R cos2 θ
=

1
2R

[sin θ(−2 cos−3 θ)(− sin θ) + cos−2 θ cos θ]

Thus

d2

dθ2
u =

1
2R

[
2 sin2 θ

cos3 θ
+

cos2 θ

cos3 θ
] =

1 + sin2 θ

2R cos3 θ

d2

dθ2
u + u =

1 + sin2 θ

2R cos3 θ
+

cos2 θ

2R cos3 θ
=

2
2R cos3 θ

That is

8R2

8R3 cos3 θ
= 8R2u3

Solving for V ( 1
u ) by integrating yields,
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V (
1
u

) = −8R2l2

4m
u4

and we have

V (r) = −2l2R2

mr4

with force equal to

f(r) = − d

dr
V (r) = −8l2R2

mr5

This force is inversely proportional to r5.

Is the energy zero? Well, we know V (r), lets find T (r) and hope its the
negative of V (r).

T =
1
2
m(ṙ2 + r2θ̇2)

Where

r = 2R cos θ → ṙ = −2R sin θθ̇

r2 = 4R2 cos2 θ ṙ2 = 4R2 sin2 θ̇2

So, plugging these in,

T =
1
2
m(4R2 sin2 θθ̇2 + 4R2 cos2 θθ̇2)

T =
m4Rθ̇2

2
= 2mR2θ̇2

Put this in terms of angular momentum, l,

l = mr2θ̇

l2 = m2r4θ̇2

T = 2mR2θ̇2 → T =
2R2l2

mr4

Which shows that

E = T + V =
2R2l2

mr4
− 2R2l2

mr4
= 0

the total energy is zero.

The period of the motion can be thought of in terms of θ as r spans from
θ = −π

2 to θ = π
2 .
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P =
∫ π

2

−π
2

dt =
∫ π

2

−π
2

dt

dθ
dθ

This is

P =
∫ π

2

−π
2

dθ

θ̇

Because θ̇ = l/mr2 in terms of angular momentum, we have

P =
∫ π

2

−π
2

mr2

l
dθ

P =
m

l

∫ π
2

−π
2

r2dθ

From above we have r2

P =
m

l

∫ π
2

−π
2

4R2 cos2 θdθ

P =
4mR2

l

∫ π
2

−π
2

cos2 θdθ =
4mR2

l
(
θ

2
+

1
4

sin 2θ

∣∣∣∣π
2

−π
2

) =
4mR2

l
(
π

4
+

π

4
)

And finally,

P =
2mπR2

l

For ẋ, ẏ, and v as a function of angle, it can be shown that all three quantities
are infinite as particle goes through the center of force. Remembering that
r = 2R cos θ,

x = r cos θ = 2R cos2 θ

y = r sin θ = 2R cos θ sin θ = R sin 2θ

Finding their derivatives,

ẋ = −4R cos θ sin θ = −2Rθ̇ sin 2θ

ẏ = 2Rθ̇ cos 2θ

v =
√

ẋ2 + ẏ2 = 2Rθ̇

What is θ̇? In terms of angular momentum we remember
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l = mr2θ̇

Plugging in our r, and solving for θ̇

θ̇ =
l

4mR2 cos2 θ

As we got closer to the origin, θ becomes close to ±π
2 .

θ = ±(
π

2
− δ)

Note that as

δ → 0 θ → ±π

2
θ̇ →∞

All ẋ, ẏ and v are directly proportional to the θ̇ term. The ẋ may be
questionable at first because it has a sin 2θ and when sin 2θ → 0 as θ → π/2 we
may be left with ∞∗ 0. But looking closely at θ̇ we can tell that

ẋ =
−4Rl cos θ sin θ

4mR2 cos2 θ
= − l

mR
tan θ

tan θ →∞ as θ → ±π

2

2.14

• For circular and parabolic orbits in an attractive 1/r potential having the
same angular momentum, show that perihelion distance of the parabola
is one-half the radius of the circle.

• Prove that in the same central force as above, the speed of a particle at
any point in a parabolic orbit is

√
2 times the speed in a circular orbit

passing through the same point.

Answer:

Using the equation of orbit, Goldstein equation 3.55,

1
r

=
mk

l2
[1 + ε cos(θ − θ′)]

we have for the circle, ε = 0

1
rc

=
mk

l2
→ rc =

l2

mk

For the parabola, ε = 1

1
rp

=
mk

l2
(1 + 1) → rp =

l2

2mk
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So

rp =
rc

2
The speed of a particle in a circular orbit is

v2
c = r2θ̇2 → v2

c = r2(
l2

m2r4
) → vc =

l

mr

In terms of k, this is equal to

l

mr
=

√
mrk

mr
=

√
k

mr

The speed of a particle in a parabola can be found by

v2
p = ṙ2 + r2θ̇2

ṙ =
d

dt
(

l2

mk(1 + cos θ)
) =

l2θ̇

mk(1 + cos θ)2
sin θ

Solving for vp,

v2
p = r2θ̇2(

sin2θ

(1 + cos θ)2
+ 1)

v2
p = r2θ̇2(

2 + 2 cos θ

(1 + cos θ)2
)

v2
p =

2r2θ̇2

1 + cos θ

Using r for a parabola from Goldstein’s (3.55), and not forgetting that k =
l2/mr,

r =
l2

mk(1 + cos θ)
→ θ̇2 =

l2

m2r4

we have

v2
p =

2r2l2mkr

m2r4l2
→ v2

p =
2k

mr

For the speed of the parabola, we then have

vp =
√

2

√
k

mr

Thus

vp =
√

2vc
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20. A uniform distribution of dust in the solar system adds to the gravitational
attraction of the Sun on a planet an additional force

F = −mCr

where m is the mas of the planet, C is a constant proportional to the gravi-
tational constant and the density of the dust, and r is the radius vector from
the Sun to the planet(both considered as points). This additional force is very
small compared to the direct Sun-planet gravitational force.

• Calculate the period for a circular orbit of radius r0 of the planet in this
combined field.

• Calculate the period of radial oscillations for slight disturbances from the
circular orbit.

• Show that nearly circular orbits can be approximated by a precessing
ellipse and find the precession frequency. Is the precession in the same or
opposite direction to the orbital angular velocity?

Answer:

The equation for period is

T =
2π

θ̇

For a circular orbit,

θ̇ =
l

mr2

Thus

T =
2πmr2

l

Goldstein’s equation after (3.58):

k

r2
0

=
l2

mr3
0

In our case, we have an added force due to the dust,

mCr0 +
k

r2
0

=
l2

mr3
0

Solving for l yields

l =
√

mr0k + m2Cr4
0
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Plugging this in to our period,

T =
2πmr2√

mr0k + m2Cr4
0

→ T =
2π√
k

mr3
0

+ C

Here the orbital angular velocity is

ωorb =

√
k

mr3
+ C

This is nice because if the dust was not there, we would have C = 0 and our
period would be

T0 =
2π√

k
mr2

0

→ ω0 =

√
k

mr2
0

which agrees with l = mr2
0ω0 and l =

√
mrk.

The period of radial oscillations for slight disturbances from the circular
orbit can be calculated by finding β. β is the number of cycles of oscillation
that the particle goes through in one complete orbit. Dividing our orbital period
by β will give us the period of the oscillations.

Tosc =
T

β

Equation (3.45) in Goldstein page 90, states that for small deviations from
circularity conditions,

u ≡ 1
r

= u0 + a cos βθ

Substitution of this into the force law gives equation (3.46)

β2 = 3 +
r

f

df

dr

∣∣∣∣
r=r0

Solve this with f = mCr + k/r2

df

dr
= −2k

r3
+ mC

β2 = 3 + r
− 2k

r3 + mC
k
r2 + mCr

β2 =
k
r2 + 4mCr
k
r2 + mCr

→ β2 =
k

mr3 + 4C
k

mr3 + C

Now
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Tosc =
T

β
β =

√
k

mr3 + 4C√
k

mr3 + C

Therefore, our period of radial oscillations is

Tosc =
2π√

k
mr3 + 4C

Here

ωr =

√
k

mr3
+ 4C

A nearly circular orbit can be approximated by a precessing ellipse. The
equation for an elliptical orbit is

r =
a(1− e2)

1 + e cos(θ − θ0

with e << 1, for a nearly circular orbit, a precessing ellipse will hug closely
to the circle that would be made by e = 0.

To find the precession frequency, I’m going to subtract the orbital angular
velocity from the radial angular velocity,

ωprec = ωr − ωorb

ωprec =

√
k

mr3
+ 4C −

√
k

mr3
+ C

Fixing this up so as to use the binomial expansion,

ωprec =

√
k

mr3
(

√
1 +

4Cmr3

k
−

√
1 +

Cmr3

k
)

Using the binomial expansion,

ωprec =

√
k

mr3
[1 +

2Cmr3

k
− (1 +

Cmr3

2k
)] =

√
k

mr3
[
2Cmr3

k
− Cmr3

2k
]

ωprec =

√
k

mr3

4Cmr3 − Cmr3

2k
=

3Cmr3

2k

√
k

mr3
=

3C

2

√
mr3

k

Therefore,
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ωprec =
3C

2ω0
→ fprec =

3C

4πω0

Because the radial oscillations take on a higher angular velocity than the
orbital angular velocity, the orbit is very nearly circular but the radial extrema
comes a tiny bit more than once per period. This means that the orbit precesses
opposite the direction of the orbital motion.

Another way to do it, would be to find change in angle for every oscillation,

∆θ = 2π − 2π

β

Using the ratios,

Tprec =
2π

∆θ
Tosc

With some mean algebra, the period of precession is

Tprec =
4π

1−
k

mr3 +C
k

mr3 +4C

1√
k

mr3 + 4c

Tprec =
4π(

√
k

mr3 + 4C)
k

mr3 + 4C − ( k
mr3 + C)

=
4π

3C

√
k

mr3
+ 4C

Because C is very small compared to k, the approximation holds,

Tprec ≈
4π

3C

√
k

mr3

Therefore,

Tprec =
4π

3C
ω0 → fprec =

3C

4πω0
→ ωprec =

3C

2ω0

where ω0 =
√

k
mr3 .
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