
Homework 9: # 8.19, 8.24, 8.25

Michael Good

Nov 2, 2004

8.19
The point of suspension of a simple pendulum of length l and mass m is con-
strained to move on a parabola z = ax2 in the vertical plane. Derive a Hamilto-
nian governing the motion of the pendulum and its point of suspension. Obtain
the Hamilton’s equations of motion.

Answer:

Let

x′ = x+ l sin θ

z′ = ax2 − l cos θ

Then

T =
1
2
m(ẋ′2 + ż′2)

U = mgz′

Solving in terms of generalized coordinates, x and θ, our Lagrangian is

L = T−U =
1
2
m(ẋ2+2ẋl cos θθ̇+4a2x2ẋ2+4axẋlθ̇ sin θ+l2θ̇2)−mg(ax2−l cos θ)

Using

L = L0 +
1
2
˜̇qT q̇

where q̇ and T are matrices. We can see

q̇ =
(
ẋ

θ̇

)

T =
(

m(1 + 4a2x2) ml(cos θ + 2ax sin θ)
ml(cos θ + 2ax sin θ) ml2

)
with
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L0 = −mg(ax2 − l cos θ)

The Hamilitonian is

H =
1
2
p̃T−1p− L0

Inverting T by (
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
with the algebra,

1
ad− bc

=
1

m2l2(1 + 4ax2)−m2l2(cos θ + 2ax sin θ)2

this is

=
1

m2l2(sin2 θ + 4ax2 − 4ax cos θ sin θ − 4a2x2 sin2 θ)

=
1

m2l2(sin2 θ − 4ax sin θ cos θ + 4a2x2 cos2 θ)

which I’ll introduce, for simplicity’s sake, Y.

=
1

m2l2(sin θ − 2ax cos θ)2
≡ 1
m2l2Y

So now we have

T−1 =
1

m2l2Y

(
ml2 −ml(cos θ + 2ax sin θ)

−ml(cos θ + 2ax sin θ) m(1 + 4a2x2)

)

T−1 =
1
mY

(
1 −(cos θ + 2ax sin θ)/l

−(cos θ + 2ax sin θ)/l (1 + 4a2x2)/l2

)
I want to introduce a new friend, lets call him J

J ≡ (cos θ + 2ax sin θ)

Y ≡ (sin θ − 2ax cos θ)2

So,

T−1 =
1
mY

(
1 −J/l

−J/l (1 + 4a2x2)/l2

)
Proceed to derive the Hamiltonian,

H =
1
2
p̃T−1p− L0
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we can go step by step,

T−1p =
1
mY

(
1 −J/l

−J/l (1 + 4a2x2/l2

) (
px

pθ

)
=

1
mY

(
px − (J/l)pθ

(−J/l)px + (1 + 4a2x2/l2)pθ

)
and

p̃T−1p =
1
mY

(p2
x −

J

l
pθpx −

J

l
pθpx +

1 + 4a2x2

l2
p2

θ)

the full Hamiltonian is

H =
1

2mY
(p2

x − 2
J

l
pθpx +

1 + 4a2x2

l2
p2

θ) +mg(ax2 − l cos θ)

plugging in my Y and J

H =
1

2m(sin θ − 2ax cos θ)2
(p2

x−2
cos θ + 2ax sin θ

l
pθpx+

1 + 4a2x2

l2
p2

θ)+mg(ax
2−l cos θ)

Now to find the equations of motion. They are

ẋ =
∂H

∂px
θ̇ =

∂H

∂pθ
ṗx = −∂H

∂x
ṗθ = −∂H

∂θ

The first two are easy, especially with my substitutions.

ẋ =
1
mY

[px −
J

l
pθ] =

1
m(sin θ − 2ax cos θ)2

[px −
cos θ + 2ax sin θ

l
pθ]

θ̇ =
1

mY l
[−Jpx+

1 + 4a2x2

l
pθ] =

1
ml(sin θ − 2ax cos θ)2

[−(cos θ+2ax sin θ)px+
1 + 4a2x2

l
pθ]

But the next two are far more involved. I handled the partial with respect
to x by taking the product rule between the two main pieces, the fraction out
front, and mess inside the parenthesis that has p terms. I then broke each p
term and began grouping them. Go slowly, and patiently. After taking the
derivative before grouping, my ṗx looked like this:

ṗx = −∂H
∂x

∂H

∂x
=

1
2m(sin θ − 2ax cos θ)2

[
−4a sin θ

l
pθpx +

8a2x

l2
p2

θ]

− −2(−2a cos θ)
2m(sin θ − 2ax cos θ)3

[p2
x − 2

cos θ + 2ax sin θ
l

pθpx +
1 + 4a2x2

l2
p2

θ] + 2mgax
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Now start simplifying. Lets group the p terms.

4a(cos θ + 2ax sin θ)
2ml2[sin θ − 2ax cos θ]3

p2
θ

4a cos θ
2m[sin θ − 2ax cos θ]3

p2
x

and the longest one..

2a
lm[sin θ − 2ax cos θ]3

[sin2 θ − 2− 2ax cos θ sin θ]pθpx

Adding them all up yields, for ṗx:

−∂H
∂x

= − 2a
m[sin θ − 2ax cos θ]3

[cos θp2
x+

cos θ + 2ax sin θ
l2

p2
θ−

2− sin2 θ + 2ax sin θ cos θ
l

pxpθ]−2mgax

Now for the next one, ṗθ:

ṗθ = −∂H
∂θ

Taking the derivative, you get a monster, of course

∂H

∂θ
=

1
2m[sin θ − 2ax cos θ]2

[
2 sin θ
l

− 4ax cos θ
l

]pθpx

+[p2
x − 2

cos θ + 2ax sin θ
l

pθpx +
1 + 4a2x2

l2
p2

θ][
−2(cos θ + 2ax sin θ)
2m[sin θ − 2ax cos θ]3

+mgl sin θ

separating terms..

−(cos θ + 2ax sin θ)
m[sin θ − 2ax cos θ]3

p2
x

cos θ + 2ax sin θ
m[sin θ − 2ax cos θ]3

1 + 4a2x2

l2
p2

θ

and the longest one...

[
(sin θ − 2ax cos θ)2

lm[sin θ − 2ax cos θ]3
+

2(cos θ + 2ax sin θ)2

lm[sin θ − 2ax cos θ]3
]pθpx

add them all up for the fourth equation of motion, ṗθ

−∂H
∂θ

=
1

m[sin θ − 2ax cos θ]3
[(cos θ + 2ax sin θ)(p2

x +
1 + 4a2x2

l2
p2

θ)

− [(sin θ − 2ax cos θ)2 + 2(cos θ + 2ax sin θ)2]
l

pθpx
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Together in all their glory:

ṗθ = −∂H
∂θ

=
1

m[sin θ − 2ax cos θ]3
[(cos θ + 2ax sin θ)(p2

x +
1 + 4a2x2

l2
p2

θ)

− [(sin θ − 2ax cos θ)2 + 2(cos θ + 2ax sin θ)2]
l

pθpx

ṗx = −∂H
∂x

= − 2a
m[sin θ − 2ax cos θ]3

[cos θp2
x+

cos θ + 2ax sin θ
l2

p2
θ−

2− sin2 θ + 2ax sin θ cos θ
l

pxpθ]−2mgax

ẋ =
1

m(sin θ − 2ax cos θ)2
[px −

cos θ + 2ax sin θ
l

pθ]

θ̇ =
1

ml(sin θ − 2ax cos θ)2
[−(cos θ + 2ax sin θ)px +

1 + 4a2x2

l
pθ]

8.24
A uniform cylinder of radius a and density ρ is mounted so as to rotate freely
around a vertical axis. On the outside of the cylinder is a rigidly fixed uniform
spiral or helical track along which a mass point m can slide without friction.
Suppose a particle starts at rest at the top of the cylinder and slides down under
the influence of gravity. Using any set of coordinates, arrive at a Hamiltonian
for the combined system of particle and cylinder, and solve for the motion of
the system.

Answer:

My generalized coordinates will be θ, the rotational angle of the particle
with respect to the cylinder, and φ the rotational angle of the cylinder. The
moment of inertia of a cylinder is

I =
1
2
Ma2 =

1
2
ρπha4

There are three forms of kinetic energy in the Lagrangian. The rotational
energy of the cylinder, the rotational energy of the particle, and the translational
kinetic energy of the particle. The only potential energy of the system will be
the potential energy due to the height of the particle. The hardest part of this
Lagrangian to understand is likely the translational energy due to the particle.
The relationship between height and angle of rotational for a helix is

h = cθ

Where c is the distance between the coils of the helix. MathWorld gives a
treatment of this under helix. Understand that if the cylinder was not rotating
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then the rotational kinetic energy of the particle would merely be m
2 a

2θ̇2, but
the rotation of the cylinder is adding an additional rotation to the particle’s
position. Lets write down the Lagrangian,

L =
1
2
Iφ̇2 +

m

2
[a2(θ̇ + φ̇)2 + c2θ̇2] +mgcθ

This is

L = L0 +
1
2
˜̇q T q̇

Solve for T.

T =
(
ma2 +mc2 ma2

ma2 I +ma2

)
q̇ =

(
θ̇

φ̇

)
Using the same 2 by 2 inverse matrix form from the previous problem, we

may solve for T−1.

T−1 =
1

(ma2 +mc2)(I +ma2)−m2a4

(
I +ma2 −ma2

−ma2 m(a2 + c2)

)
Now we can find the Hamiltonian.

H =
1
2
p̃ T−1p− L0

This is

H =
p2

θ(I +ma2)− 2ma2pθpφ + p2
φm(a2 + c2)

2[m(a2 + c2)(I +ma2)−m2a4]
−mgcθ

From the equations of motion, we can solve for the motion of the system.
(duh!) Here are the EOM:

−∂H
∂θ

= ṗθ = mgc

−∂H
∂φ

= ṗφ = 0

∂H

∂pθ
= θ̇ =

(I +ma2)pθ −ma2pφ

m(a2 + c2)(I +ma2)−m2a4

∂H

∂pφ
= φ̇ =

−ma2pθ + pφm(a2 + c2)
m(a2 + c2)(I +ma2)−m2a4

To solve for the motion, lets use the boundary conditions. θ̇(0) = φ̇(0) = 0
leads to pφ(0) = pθ(0) = 0 leads to

pθ = mgct pφ = 0
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Pluggin and chuggin into θ̇ and φ̇ and integrating, yields the motion

φ =
−m2a2gct2

2[m(a2 + c2)(I +ma2)−m2a4]

θ =
(I +ma2)mgct2

2[m(a2 + c2)(I +ma2)−m2a4]

If we plug in I = 1
2Ma2 where M is the mass of the cylinder, we obtain

φ =
−mgct2

2[mc2 + 1
2M(a2 + c2)]

θ =
(m+ 1

2M)gct2

2[mc2 + 1
2M(a2 + c2)]

8.25
Suppose that in the previous exercise the cylinder is constrained to rotate uni-
formly with angular frequency ω. Set up the Hamiltonian for the particle in an
inertial system of coordinates and also in a system fixed in the rotating cylin-
der. Identify the physical nature of the Hamiltonian in each case and indicate
whether or not the Hamiltonians are conserved.

Answer:

In the laboratory system, the particle moves through an angle ψ = θ + φ.
The cylinder moves uniformly, φ = ωt, so the kinetic energy

T =
1
2
ma2(θ̇ + φ̇)2 +

1
2
mc2θ̇2

may be expressed

T =
1
2
ma2ψ̇2 +

1
2
mc2(ψ̇ − ω)2

The potential energy may be written

U = −mgc(ψ − ωt)

So we have

L =
1
2
m(a2ψ̇2 + c2(ψ̇ − ω)2) +mgc(ψ − ωt)

∂L

∂q̇
= p = ma2ψ̇ +mc2(ψ̇ − ω)

and with

H =
1
2
(p̃− a)T−1(p̃− a)− L0
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we find T−1 from

L =
1
2
˜̇q T−1q̇ + q̇a+ L0

We can see things better if we spread out L

L =
1
2
ma2ψ̇2 +

1
2
mc2ψ̇2 −mc2ωψ̇ +

1
2
mc2ω2 +mgc(ψ − ωt)

so

L0 =
1
2
mc2ω2 +mgc(ψ − ωt)

and

T = [ma2 +mc2]

T−1 =
1

m(a2 + c2)

Therefore, for our Hamiltonian, we have

Hlab =
(p−mc2ω)2

2m(a2 + c2)
− mc2ω2

2
−mgc(ψ − ωt)

This is dependent on time, therefore it is not the total energy.

For the Hamiltonian in the rotating cylinder’s frame, we express the move-
ment in terms of the angle θ this is with respect to the cylinder.

ψ = θ + φ = θ + ωt

ψ̇ = θ̇ + φ̇ = θ̇ + ω

T =
1
2
ma2(θ̇ + ω)2 +

1
2
mc2θ̇2

U = −mgcθ

L =
1
2
ma2(θ̇ + ω)2 +

1
2
mc2θ̇2 +mgcθ

L =
1
2
˜̇q T q̇ + q̇a+ L0

Spread out L

L =
1
2
[ma2 +mc2]θ̇2 +ma2θ̇ω +

1
2
ma2ω2 +mgcθ

It becomes clear that
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T = [ma2 +mc2]

T−1 =
1

ma2 +mc2

L0 =
1
2
ma2ω +mgcθ

Using again,

H =
1
2
(p− a)T−1(p− a)− L0

we may write

H =
(p−ma2ω)2

2m(a2 + c2)
− 1

2
ma2ω −mgcθ

This is not explicitly dependent on time, it is time-independent, thus con-
served.
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