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Michael Good

Oct 4, 2004

4.1
Prove that matrix multiplication is associative. Show that the product of two
orthogonal matrices is also orthogonal.

Answer:

Matrix associativity means

A(BC) = (AB)C

The elements for any row i and column j, are

A(BC) =
∑

k

Aik(
∑
m

BkmCmj)

(AB)C =
∑
m

(
∑

k

AikBkm)Cmj

Both the elements are the same. They only differ in the order of addition.
As long as the products are defined, and there are finite dimensions, matrix
multiplication is associative.

Orthogonality may be defined by

ÃA = I

The Pauli spin matrices, σx, and σz are both orthogonal.

σ̃xσx =
(

0 1
1 0

) (
0 1
1 0

)
=

(
1 0
0 1

)
= I

σ̃zσz =
(

1 0
0 −1

) (
1 0
0 −1

)
=

(
1 0
0 1

)
= I

The product of these two:

σxσz =
(

0 1
1 0

) (
1 0
0 −1

)
=

(
0 −1
1 0

)
≡ q
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is also orthogonal:

q̃q =
(

0 1
−1 0

) (
0 −1
1 0

)
=

(
1 0
0 1

)
= I

More generally, if

ÃA = 1 B̃B = 1

then both A, and B are orthogonal. We can look at

ÃBAB =
∑

k

(ÃB)ik(AB)kj =
∑

k

ABkiABkj =
∑
k,s,r

aksbsiakrbrj

The elements are∑
k,s,r

aksbsiakrbrj =
∑

bsiaksakrbrj =
∑

bsi(ÃA)srbrj

This is

ÃBAB =
∑

bsiδsrbrj = B̃Bij = δij

Therefore the whole matrix is I and the product

ÃBAB = I

is orthogonal.
4.2
Prove the following properties of the transposed and adjoint matrices:

ÃB = B̃Ã

(AB)† = B†A†

Answer:

For transposed matrices

ÃB = ÃBij = ABji =
∑

ajsbsi =
∑

bsiajs =
∑

B̃isÃsj = (B̃Ã)ij = B̃Ã

As for the complex conjugate,

(AB)† = (ÃB)∗

From our above answer for transposed matrices we can say

ÃB = B̃Ã
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And so we have

(AB)† = (ÃB)∗ = (B̃Ã)∗ = B̃∗Ã∗ = B†A†

4.10
If B is a square matrix and A is the exponential of B, defined by the infinite
series expansion of the exponential,

A ≡ eB = 1 +B +
1
2
B2 + ...+

Bn

n!
+ ...,

then prove the following properties:

• eBeC = eB+C , providing B and C commute.

• A−1 = e−B

• eCBC−1
= CAC−1

• A is orthogonal if B is antisymmetric

Answer:

Providing that B and C commute;

BC − CB = 0 BC = CB

we can get an idea of what happens:

(1+B+
B2

2
+O(B3))(1+C+

C2

2
+O(C3)) = 1+C+

C2

2
+B+BC+

B2

2
+O(3)

This is

1+(B+C)+
1
2
(C2+2BC+B2)+O(3) = 1+(B+C)+

(B + C)2

2
+O(3) = eB+C

Because BC = CB and where O(3) are higher order terms with products of
3 or more matrices. Looking at the kth order terms, we can provide a rigorous
proof.

Expanding the left hand side of

eBeC = eB+C

and looking at the kth order term, by using the expansion for exp we get,
noting that i+ j = k

k∑
0

BiCj

i!j!
=

k∑
0

Bk−jCj

(k − j)!j!
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and using the binomial expansion on the right hand side for the kth order
term, (a proof of which is given in Riley, Hobsen, Bence):

(B + C)k

k!
=

1
k!

k∑
0

k!
(k − j)!j!

Bk−jCj =
k∑
0

Bk−jCj

(k − j)!j!

we get the same term. QED.
To prove

A−1 = e−B

We remember that

A−1A = 1

and throw e−B on the right

A−1Ae−B = 1e−B

A−1eBe−B = e−B

and from our above proof we know eBeC = eB+C so

A−1eB−B = e−B

Presto,

A−1 = e−B

To prove

eCBC−1
= CAC−1

its best to expand the exp

∞∑
0

1
n!

(CBC−1)n = 1+CBC−1+
CBC−1CBC−1

2
+....+

CBC−1CBC−1CBC−1...

n!
+...

Do you see how the middle C−1C terms cancel out? And how they cancel
each out n times? So we are left with just the C and C−1 on the outside of the
B’s.

∞∑
0

1
n!

(CBC−1)n =
∞∑
0

1
n!
CBnC−1 = CeBC−1

Remember A = eB and we therefore have

eCBC−1
= CAC−1
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To prove A is orthogonal

Ã = A−1

if B is antisymmetric

−B = B̃

We can look at the transpose of A

Ã =
∞̃∑
0

Bn

n!
=

∞∑
0

B̃n

n!
=

∞∑
0

(−B)n

n!
= e−B

But from our second proof, we know that e−B = A−1, so

Ã = A−1

and we can happily say A is orthogonal.
4.14

• Verify that the permutation symbol satisfies the following identity in terms
of Kronecker delta symbols:

εijpεrmp = δirδjm − δimδjr

• Show that
εijpεijk = 2δpk

Answer:
To verify this first identity, all we have to do is look at the two sides of the
equation, analyzing the possibilities, i.e. if the right hand side has

i = r j = m 6= i

we get +1. If

i = m j = r 6= i

we get −1. For any other set of i, j, r, and m we get 0.

For the left hand side, lets match conditions, if

i = r j = m 6= i

then εijp = εrmp and whether or not εijp is ±1 the product of the two gives
a +1. If

i = m j = r 6= i
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then εrmp = εjip = −εijp and whether or not εijp is ±1 the product is now
equal to −1.

These are the only nonzero values because for i, j, r,m, none can have the
same value as p. Since there are only three values, that any of the subscripts
may take, the only non-zero values are the ones above. (not all four subscripts
may be equal because then it would be ε = 0 as if i = j or r = m).

To show that
εijpεijk = 2δpk

we can use our previous identity, cast in a different form:

εijkεimp = δjmδkp − δjpδkm

This is equivalent because the product of two Levi-Civita symbols is found
from the deteriment of a matrix of delta’s, that is

εijkεrmp = δirδjmδkp +δimδjpδkr +δipδjrδkm−δimδjrδkp−δirδjpδkm−δipδjmδkr

For our different form, we set i = r. If we also set j = m, this is called
‘contracting’ we get

εijkεijp = δjjδkp − δjpδkj

Using the summation convention, δjj = 3,

εijkεijp = 3δkp − δkp

εijkεijp = 2δkp

4.15
Show that the components of the angular velocity along the space set of axes
are given in terms of the Euler angles by

ωx = θ̇ cosφ+ ψ̇ sin θ sinφ

ωy = θ̇ sinφ− ψ̇ sin θ cosφ

ωz = ψ̇ cos θ + φ̇

Answer:

Using the same analysis that Goldstein gives to find the angular velocity
along the body axes (x′, y′, z′) we can find the angular velocity along the space
axes (x, y, z). To make a drawing easier, its helpful to label the axes of rotation
for θ̇, ψ̇ and φ̇.
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θ̇ → L.O.N.

ψ̇ → z′

φ̇→ z

We want

ωx = θ̇x + ψ̇x + φ̇x

ωy = θ̇y + ψ̇y + φ̇y

ωz = θ̇z + ψ̇z + φ̇z

Lets start with ωz first to be different. If we look at the diagram carefully on
page 152, we can see that θ̇ is along the line of nodes, that is θ revolves around
the line of nodes. Therefore because the line of nodes is perpendicular to the z
space axis there is no component of θ contributing to angular velocity around
the z space axis. θ̇z = 0. What about ψ̇z? Well, ψ revolves around z′. So there
is a component along z due to a changing ψ. That component depends on how
much angle there is between z′ and z, which is θ. Does this makes sense? We
find the z part, which is the adjacent side to θ. Thus we have ψ̇z = ψ̇ cos θ.
Now lets look at φ̇z. We can see that φ just revolves around z in the first place!
Right? So there is no need to make any ‘transformation’ or make any changes.
Lets take φ̇z = φ̇. Add them all up for our total ωz.

ωz = θ̇z + ψ̇z + φ̇z = 0 + ψ̇ cos θ + φ̇

Now lets do the harder ones. Try ωx. What is θ̇x? Well, θ̇ is along the line
of nodes, that is, θ changes and revolves around the line of nodes axis. To find
the x component of that, we just see that the angle between the line of nodes
and the x axis is only φ, because they both lie in the same xy plane. Yes? So
θ̇x = θ̇ cosφ. The adjacent side to φ with θ̇ as the hypotenuse. Lets look at φ̇x.
See how φ revolves around the z axis? Well, the z axis is perpendicular to the
x axis there for there is no component of φ̇ that contributes to the x space axis.
φ̇x = 0. Now look at ψ̇x. We can see that ψ̇ is along the z′ body axis, that is,
it is in a whole different plane than x. We first have to find the component in
the same xy plane, then find the component of the x direction. So to get into
the xy plane we can take ψ̇x,y = ψ̇ sin θ. Now its in the same plane. But where
is it facing in this plane? We can see that depends on the angle φ. If φ = 0
we would have projected it right on top of the y − axis! So we can make sure
that if φ = 0 we have a zero component for x by multiplying by sinφ. So we
get after two projections, ψ̇x = ψ̇ sin θ sinφ. Add these all up for our total ωx,
angular velocity in the x space axis.

ωx = θ̇x + ψ̇x + φ̇x = θ̇ cosφ+ ψ̇ sin θ sinφ+ 0

I’ll explain ωy for kicks, even though the process is exactly the same. Look
for θ̇y. θ̇ is along the line of nodes. Its y component depends on the angle φ. So
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project it to the y axis. θ̇y = θ̇ sinφ. Look for ψ̇y. Its in a different plane again,
so two projections are necessary to find its component. Project down to the xy
plane like we did before, ψ̇x,y = ψ̇ sin θ and now we remember that if φ = 0 we
would have exactly placed it on top of the y axis. Thats good! So lets make it if
φ = 0 we have the full ψ̇ sin θ, (ie multiply by cosφ because cos 0 = 1). But we
also have projected it in the opposite direction of the positive y direction, (throw
in a negative). So we have ψ̇y = −ψ̇ sin θ cosφ. For φ̇y we note that φ revolves
around the z axis, completely perpendicular to y. Therefore no component in
the y direction. φ̇y = 0. Add them all up

ωy = θ̇y + ψ̇y + φ̇y = θ̇ sinφ− ψ̇ sin θ cosφ+ 0

Here is all the ω’s together

ωx = θ̇ cosφ+ ψ̇ sin θ sinφ

ωy = θ̇ sinφ− ψ̇ sin θ cosφ

ωz = ψ̇ cos θ + φ̇
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