
Homework 1: # 1, 2, 6, 8, 14, 20

Michael Good

August 22, 2004

1. Show that for a single particle with constant mass the equation of motion
implies the follwing differential equation for the kinetic energy:

dT

dt
= F · v

while if the mass varies with time the corresponding equation is

d(mT )
dt

= F · p.

Answer:

dT

dt
=
d( 1

2mv
2)

dt
= mv · v̇ = ma · v = F · v

with time variable mass,

d(mT )
dt

=
d

dt
(
p2

2
) = p · ṗ = F · p.

2. Prove that the magnitude R of the position vector for the center of mass
from an arbitrary origin is given by the equation:

M2R2 = M
∑

i

mir
2
i −

1
2

∑
i,j

mimjr
2
ij .

Answer:

MR =
∑

miri

M2R2 =
∑
i,j

mimjri · rj

Solving for ri · rj realize that rij = ri − rj . Square ri − rj and you get
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r2ij = r2i − 2ri · rj + r2j

Plug in for ri · rj

ri · rj =
1
2
(r2i + r2j − r2ij)

M2R2 =
1
2

∑
i,j

mimjr
2
i +

1
2

∑
i,j

mimjr
2
j −

1
2

∑
i,j

mimjr
2
ij

M2R2 =
1
2
M

∑
i

mir
2
i +

1
2
M

∑
j

mjr
2
j −

1
2

∑
i,j

mimjr
2
ij

M2R2 = M
∑

i

mir
2
i −

1
2

∑
i,j

mimjr
2
ij

6. A particle moves in the xy plane under the constraint that its velocity vector
is always directed toward a point on the x axis whose abscissa is some given
function of time f(t). Show that for f(t) differentiable, but otherwise arbitrary,
the constraint is nonholonomic.

Answer:

The abscissa is the x-axis distance from the origin to the point on the x-axis
that the velocity vector is aimed at. It has the distance f(t).

I claim that the ratio of the velocity vector components must be equal to
the ratio of the vector components of the vector that connects the particle to
the point on the x-axis. The directions are the same. The velocity vector
components are:

vy =
dy

dt

vx =
dx

dt

The vector components of the vector that connects the particle to the point
on the x-axis are:

Vy = y(t)

Vx = x(t) − f(t)

For these to be the same, then

vy

vx
=
Vy

Vx
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dy

dx
=

y(t)
x(t) − f(t)

dy

y(t)
=

dx

x(t) − f(t)

This cannot be integrated with f(t) being arbitrary. Thus the constraint is
nonholonomic. If the constraint was holonomic then

F (x, y, t) = 0

would be true. If an arbitrary, but small change of dx, dy, dt was made subject
to the constraint then the equation

∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂t
dt = 0

would hold. From this it can be seen our constraint equation is actually

ydx+ (f(t) − x)dy + (0)dt = 0

Thus

∂F

dt
= 0

∂F

∂x
= yI

∂F

∂y
= (f(t) − x)I

where I is our integrating factor, I(x, y, t). The first equation shows F = F (x, y)
and the second equation that I = I(x, y). The third equation shows us that all
of this is impossible because

f(t) =
∂F

∂y

1
I(x, y)

+ x

where f(t) is only dependent on time, but the right side depends only on x and
y. There can be no integrating factor for the constraint equation and thus it
means this constraint is nonholonomic.

8. If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s
equations, show by direct substitution that

L′ = L+
dF (q1, ..., qn, t)

dt

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable,
function of its arguments.

Answer:

Let’s directly substitute L′ into Lagrange’s equations.
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d

dt

∂L′

∂q̇
− ∂L′

∂q
= 0

d

dt

∂

∂q̇
(L+

dF

dt
) − ∂

∂q
(L+

dF

dt
) = 0

d

dt
[
∂L

∂q̇
+

∂

∂q̇

dF

dt
] − ∂L

∂q
− ∂

∂q

dF

dt
= 0

d

dt

∂L

∂q̇
− ∂L

∂q
+
d

dt

∂

∂q̇

dF

dt
− ∂

∂q

dF

dt
= 0

On the left we recognized Lagrange’s equations, which we know equal zero.
Now to show the terms with F vanish.

d

dt

∂

∂q̇

dF

dt
− ∂

∂q

dF

dt
= 0

d

dt

∂Ḟ

∂q̇
=
∂Ḟ

∂q

This is shown to be true because

∂Ḟ

∂q̇
=
∂F

∂q

and

d

dt

∂Ḟ

∂q̇
=

d

dt

∂F

∂q

=
∂

∂t

∂F

∂q
+

∂

∂q

∂F

∂q
q̇

=
∂

∂q
[
∂F

∂t
+
∂F

∂q
q̇] =

∂Ḟ

∂q

Thus as Goldstein reminded us, L = T − V is a suitable Lagrangian, but it
is not the only Lagrangian for a given system.

14. Two points of mass m are joined by a rigid weightless rod of length l, the
center of which is constrained to move on a circle of radius a. Express the
kinetic energy in generalized coordinates.

Answer:

T = T1 + T2
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Where T1 equals the kinetic energy of the center of mass, and T2 is the ki-
netic energy about the center of mass. I will keep these two parts separate.

Solve for T1 first, its the easiest:

T1 =
1
2
Mv2

cm =
1
2
(2m)(aψ̇)2 = ma2ψ̇2

Solve for T2, realizing that the rigid rod is probably not restricted to just
the X-Y plane. The Z-axis adds more complexity to the problem.

T2 =
1
2
Mv2 = mv2

Solve for v2 about the center of mass. The angle φ will be the angle in the
x-y plane, while the angle θ will be the angle from the z-axis.

If θ = 90o and φ = 0o then x = l/2 so:

x =
l

2
sin θ cosφ

If θ = 90o and φ = 90o then y = l/2 so:

y =
l

2
sin θ sinφ

If θ = 0o, then z = l/2 so:

z =
l

2
cos θ

Find v2:

ẋ2 + ẏ2 + ż2 = v2

ẋ =
l

2
(cosφ cos θθ̇ − sin θ sinφφ̇)

ẏ =
1
2
(sinφ cos θθ̇ + sin θ cosφφ̇)

ż = − l

2
sin θθ̇

Carefully square each:

ẋ2 =
l2

4
cos2 φ cos2 θθ̇2 − 2

l

2
sin θ sinφφ̇

l

2
cosφ cos θθ̇ +

l2

4
sin2 θ sin2 φφ̇2

ẏ2 =
l2

4
sin2 φ cos2 θθ̇2 + 2

l

2
sin θ cosφφ̇

l

2
sinφ cos θθ̇ +

l2

4
sin2 θ cos2 φφ̇2
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ż2 =
l2

4
sin2 θθ̇2

Now add, striking out the middle terms:

ẋ2+ẏ2+ż2 =
l2

4
[cos2 φ cos2 θθ̇2+sin2 θ sin2 φφ̇2+sin2 φ cos2 θθ̇2+sin2 θ cos2 φφ̇2+sin2 θθ̇2]

Pull the first and third terms inside the brackets together, and pull the
second and fourth terms together as well:

v2 =
l2

4
[cos2 θθ̇2(cos2 φ+ sin2 φ) + sin2 θφ̇2(sin2 φ+ cos2 φ) + sin2 θθ̇2]

v2 =
l2

4
(cos2 θθ̇2 + sin2 θθ̇2 + sin2 θφ̇2)

v2 =
l2

4
(θ̇2 + sin2 θφ̇2)

Now that we finally have v2 we can plug this into T2

T = T1 + T2 = ma2ψ̇2 +m
l2

4
(θ̇2 + sin2 θφ̇2)

I want to emphasize again that T1 is the kinetic energy of the total mass
around the center of the circle while T2 is the kinetic energy of the masses about
the center of mass.

20. A particle of massmmoves in one dimension such that it has the Lagrangian

L =
m2ẋ4

12
+mẋ2V (x) − V2(x)

where V is some differentiable function of x. Find the equation of motion for
x(t) and describe the physical nature of the system on the basis of this system.

Answer:

Correcting for error,

L =
m2ẋ4

12
+mẋ2V (x) − V 2(x)

Finding the equations of motion from Euler-Lagrange formulation:

∂L

∂x
= +mẋ2V ′(x) − 2V (x)V ′(x)
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∂L

∂ẋ
= +

m2ẋ3

3
+ 2mẋV (x)

d

dt

∂L

∂ẋ
= m2ẋ2ẍ+ 2mV (x)ẍ+ 2mẋV ′(x)ẋ

Thus

−mẋ2V ′ + 2V V ′ +m2ẋ2ẍ+ 2mV ẍ+ 2mẋV ′(x)ẋ = 0

mẋ2V ′ + 2V V ′ +m2ẋ2ẍ+ 2mV ẍ = 0

is our equation of motion. But we want to interpret it. So lets make it look
like it has useful terms in it, like kinetic energy and force. This can be done by
dividing by 2 and separating out 1

2mv
2 and ma’s.

mẋ2

2
V ′ + V V ′ +

mẋ2

2
mẍ+mẍV = 0

Pull V ′ terms together and mẍ terms together:

(
mẋ2

2
+ V )V ′ +mẍ(

mẋ2

2
+ V ) = 0

Therefore:

(
mẋ2

2
+ V )(mẍ+ V ′) = 0

Now this looks like E · E′ = 0 because E = mẋ2

2 + V (x). That would mean

d

dt
E2 = 2EE′ = 0

Which reveals that E2 is a constant. If we look at t = 0 and the starting
energy of the particle, then we will notice that if E = 0 at t = 0 then E = 0 for
all other times. If E 6= 0 at t = 0 then E 6= 0 all other times while mẍ+V ′ = 0.
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