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4.22
A projectile is fired horizontally along Earth’s surface. Show that to a first
approximation the angular deviation from the direction of fire resulting from
the Coriolis effect varies linearly with time at a rate

ω cos θ

where ω is the angular frequency of Earth’s rotation and θ is the co-latitude,
the direction of deviation being to the right in the northern hemisphere.

Answer:

I’ll call the angular deviation ψ. We are to find

ψ = ω cos θt

We know ω is directed north along the axis of rotation, that is, sticking out
of the north pole of the earth. We know θ is the co-latitude, that is, the angle
from the poles to the point located on the surface of the Earth. The latitude, λ
is the angle from the equator to the point located on the surface of the Earth.
λ = π/2 − θ. Place ourselves in the coordinate system of whoever may be fir-
ing the projectile on the surface of the Earth. Call y′ the horizontal direction
pointing north (not toward the north pole or into the ground, but horizontally
north), call x′ the horizontal direction pointed east, and call z′ the vertical di-
rection pointed toward the sky.

With our coordinate system in hand, lets see where ω is. Parallel transport
it to the surface and note that it is between y′ and z′. If we are at the north
pole, it is completely aligned with z′, if we are at the equator, ω is aligned with
y′. Note that the angle between z′ and ω is the co-latitude, θ.(θ is zero at the
north pole, when ω and z′ are aligned). If we look at the components of ω, we
can take a hint from Goldstein’s Figure 4.13, that deflection of the horizontal
trajectory in the northern hemisphere will depend on only the z′ component of
ω, labeled ωz′ . Only ωz is used for our approximation. It is clear that there is
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no component of ω in the x′ direction. If we took into account the component
in the y′ direction we would have an effect causing the particle to move into the
vertical direction, because the Coriolis effect is

Fc = −2m(ω × v)

and ωy×v would add a contribution in the z direction because our projectile
is fired only along x′ and y′, that is, horizontally. So following Goldstein’s figure,
we shall only be concerned with ωz. Our acceleration due to the Coriolis force
is

ac = −2(ω × v) = 2(v × ω)

The component of ω in the z′ direction is ωz′ = ω cos θ. Thus the magnitude
of the acceleration is

ac = 2vω cos θ

The distance affected by this acceleration can be found through the equation
of motion,

d =
1
2
act

2 = vω cos θt2

And using a small angle of deviation, for ψ we can draw a triangle and note
that the distance traveled by the projectile is just x = vt.

xψ = d → ψ =
d

x

ψ =
vω cos θt2

vt
= ω cos θt

Therefore the angular deviation varies linearly on time with a rate of ω cos θ.
Note that there is no Coriolis effect at the equator when θ = π/2, therefore no
angular deviation.
5.15
Find the principal moments of inertia about the center of mass of a flat rigid
body in the shape of a 45o right triangle with uniform mass density. What are
the principal axes?

Answer:

Using the moment of inertia formula for a lamina, which is a flat closed
surface, (as explained on wolfram research) we can calculate the moment of
inertia for the triangle, with it situated with long side on the x-axis, while the
y-axis cuts through the middle. The off-diagonal elements of the inertia tensor
vanish.
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Ix =
∫
σy2dxdy = 2

∫ a

0

∫ a−x

0

M

A
y2dydx =

2M
a2

∫ a

0

(a− x)3

3
dx

Solving the algebra,

Ix =
2M
3a2

∫ a

0

(−x3 + 3ax2 − 3a2x+ a3)dx =
2Ma2

3
[
8
4
− 1

4
− 6

4
] =

Ma2

6

For Iy

Iy =
∫
σx2dxdy = 2

∫ a

0

∫ a−y

0

M

A
x2dxdy

This has the exact same form, so if you’re clever, you won’t do the integral
over again.

Iy =
Ma2

6
For Iz

Iz =
∫
σ(x2 + y2)dxdy = Ix + Iy = (

1
6

+
1
6
)Ma2 =

Ma2

3

We can use the parallel axis theorem to find the principal moments of inertia
about the center of mass. The center of mass is

ycm = 2
σ

M

∫ a

0

∫ a−x

0

ydxdy =
2
a2

∫ a

0

(a− x)2

2
dx

ycm =
1
a2

∫ a

0

(a2 − 2xa+ x2)dx = a2x− ax2 +
x3

3

∣∣∣∣a
0

1
a2

=
a

3

From symmetry we can tell that the center of mass is (0, a
3 , 0). Using the

parallel axis theorem, with r0 = a/3

IX = Ix −Mr20

IY = Iy

IZ = Iz −Mr20

These are

IX = (
1
6
− 1

9
)Ma2 = (

3
18
− 2

18
)Ma2 =

Ma2

18

IY =
Ma2

6
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IZ = (
1
3
− 1

9
)Ma2 =

2
9
Ma2

5.21
A compound pendulum consists of a rigid body in the shape of a lamina sus-
pended in the vertical plane at a point other than the center of gravity. Compute
the period for small oscillations in terms of the radius of gyration about the cen-
ter of gravity and the separation of the point of suspension from the center of
gravity. Show that if the pendulum has the same period for two points of sus-
pension at unequal distances from the center of gravity, then the sum of these
distances is equal to the length of the equivalent simple pendulum.

Answer:

Looking for an equation of motion, we may equate the torque to the moment
of inertia times the angular acceleration.

lF = Iθ̈

The force is −Mg sin θ, and the moment of inertia, using the parallel axis
theorem is

I = Mr2g +Ml2

where rg radius of gyration about the center of gravity, and l is the distance
between the pivot point and center of gravity. The equation of motion becomes

−lMg sin θ = (Mr2g +Ml2)θ̈

Using small oscillations, we can apply the small angle approximation sin θ ≈
θ

−lgθ = (r2g + l2)θ̈

lg

r2g + l2
θ + θ̈ = 0

This is with angular frequency and period

ω =

√
lg

r2g + l2
→ T =

2π
ω

= 2π

√
r2g + l2

lg

This is the same as the period for a physical pendulum

T = 2π

√
I

Mgl
= 2π

√
r2g + l2

lg

If we have two points of suspension, l1 and l2, each having the same period,
T . Then we get
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2π

√
r2g + l21
l1g

= 2π

√
r2g + l22
l2g

This is

r2g + l21
l1

=
r2g + l22
l2

And in a more favorable form, add l1 to both sides, because we are looking
for l1 + l2 to be equivalent to a simple pendulum length,

r2g
l1

+ l1 + l1 =
r2g
l2

+ l2 + l1

r2g
l1l2

(l2 − l1) + 2l1 = l2 + l1

This is only true if

r2g = l1l2

Thus our period becomes

T = 2π

√
r2g + l21
l1g

= 2π

√
l1l2 + l21
l1g

= 2π

√
l2 + l1
g

= 2π

√
L

g

where L is the length of a simple pendulum equivalent.
5.23
An automobile is started from rest with one of its doors initially at right angles.
If the hinges of the door are toward the front of the car, the door will slam shut
as the automobile picks up speed. Obtain a formula for the time needed for the
door to close if the acceleration f is constant, the radius of gyration of the door
about the axis of rotation is r0 and the center of mass is at a distance a from
the hinges. Show that if f is 0.3m/s2 and the door is a uniform rectangle is
1.2m wide, the time will be approximately 3.04 s.

Answer:

Begin by setting the torque equal to the product of the moment of inertia
and angular acceleration.

Iθ̈ = aF

The moment of inertia is I = mr20. The force is F = −mf sin θ. So we get

mr20 θ̈ = −amf sin θ

Our equation of motion is
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θ̈ = −af
r20

sin θ

This is rough. In our case we can not use the small angle approximation. The
door starts at 90o! How do we go about solving this then? Lets try integrating
it once and see how far we can get. Here is a handy trick,

θ̈ =
d

dt

dθ

dt
=
dθ̇

dt
=
dθ̇

dθ

dθ

dt
=
dθ̇

dθ
θ̇

Plug this into our equation of motion

dθ̇

dθ
θ̇ = −af

r20
sin θ

This is separable, and may be integrated.

θ̇2

2
=
af

r20
cos θ

θ̇ =

√
2af
r20

cos θ

The time may be found by integrating over the time of travel it takes for the
door to shut.

T =
∫ π

2

0

dt

dθ
dθ =

∫ π
2

0

dθ

θ̇
=

∫ π
2

0

√
r20

2af
dθ√
cos θ

Here is where the physics takes a backseat for a few, while the math runs
the show. If we throw in a − cos 90o we might notice that this integral is an
elliptic integral of the first kind, denoted K.

T =

√
r20

2af

∫ π
2

0

dθ√
cos θ

=

√
r20

2af

∫ π
2

0

dθ√
cos θ − cos π

2

=

√
r20

2af

√
2K(sin

π

4
)

This can be seen from mathworld’s treatment of elliptic integrals, at
http://mathworld.wolfram.com/EllipticIntegraloftheFirstKind.html.
Now we have

T =

√
r20
af
K(
√

2
2

)

K(
√

2
2 ) belongs to a group of functions called ‘elliptic integral singular val-

ues’, K(kr) A treatment of them and a table of their values that correspond to
gamma functions are given here:

http://mathworld.wolfram.com/EllipticIntegralSingularValue.html.
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The ‘elliptic lambda function’ determines the value of kr. A table of lambda
functions is here

http://mathworld.wolfram.com/EllipticLambdaFunction.html.
Our kr value of

√
2

2 corresponds to k1. From the singular value table,

K(k1) =
Γ2( 1

4 )
4
√
π

Our time is now

T =

√
r20
af

Γ2( 1
4 )

4
√
π

Fortunately, there are nice calculators that will compute gamma functions
quickly. I used this one

http://www.efunda.com/math/gamma/findgamma.cfm.
I now have

Γ(
1
4
) = 3.63

Back to the physics. The moment of inertia of a uniform rectangle about
the axis that bisects it is M

3 a
2. Move the axis to the edge of the rectangle using

the parallel axis theorem.

I = Mr20 = Ma2 +
M

3
a2 =

4
3
Ma2

we now have

r20 =
4
3
a2

With a = .6m, that is, half of the length of the car door, assuming its mass
is uniform. And with f = .3m/s2 we have

T =
√

4a
3f

1
4
√
π

(3.63)2 =

√
4(.6)
3(.3)

1
4
√

3.14
(3.63)2 = 3.035 ≈ 3.04 s

Foucault Pendulum
Find the period of rotation as a function of latitude.
Hint: neglect centrifugal force, neglect change in height, solve for ξ = x+ iy

Answer:

The Foucault pendulum is a swinging weight supported by a long wire, so
that the wire’s upper support restrains the wire only in the vertical direction
and the weight is set swinging with no lateral or circular motion. The plane
of the pendulum gradually rotates, demonstrating the Earth’s rotation. Solve
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for the period of rotation of this plane. The equation of motion for acceleration
takes into account the vertical acceleration due to gravity, the acceleration from
the tension and the Coriolis acceleration.

ar = g +
T

m
− 2ω × vr

In my system, I have x facing east, y facing north, and z facing to the sky.
This yeilds

ωx = 0

ωy = ω sin θ = ω cosλ

ωz = ω cos θ = ω sinλ

The only velocity contributions come from the x and y components, for we
can ignore the change in height. The Coriolis acceleration is quickly derived

ac = ẏω sinλx̂− ẋω sinλŷ + ẋω cosλẑ

Looking for the period of rotation, we are concerned only with the x and y
accelerations. Our overall acceleration equations become

ẍ = −g
l
x+ 2ẏω sinλ

ÿ = −g
l
y − 2ẋω sinλ

The g/l terms were found using approximations for the tension components,
that is, Tx = −T x

l → Tx/ml = g/l and the same for y.

Introducing ξ = x + iy and adding the two equations after multiplying the
second one by i

ξ̈ +
g

l
ξ = −2ω sinλ(−ẏ + iẋ)

ξ̈ +
g

l
ξ = −2iω sinλξ̇

ξ̈ +
g

l
ξ + 2iω sinλξ̇ = 0

This is the damped oscillation expression. It’s solution is, using g
l >>

ω sinλ, the over damped case

ξ = e−iω sin λt(Aei
√

g
l t +Be−i

√
g
l t)

The equation for oscillation of a pendulum is

q̈ +
g

l
q = 0

It has solution
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q = Aei
√

g
l t +Be−i

√
g
l t

We can simplify our expression then, using q

ξ = qe−iω sin λt

Where the angular frequency of the plane’s rotation is ω cos θ, or ω sinλ
where λ is the latitude, and θ is the co-latitude. The period can be found using,
ω = 2π/T .

2π
Tearth

cos θ =
2π

TFoucault
→ TFoucault =

TEarth

cos θ

This can be checked because we know the pendulum rotates completely in
1 day at the North pole where θ = 0 and has no rotation at the equator where
θ = 900. Chapel Hill has a latitude of 36o, a Foucault pendulum takes

TFoucault =
24 hours
sin 36o

≈ 41 hours

to make a full revolution.
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