
Homework 10: # 9.2, 9.6, 9.16, 9.31

Michael Good

Nov 2, 2004

9.2
Show that the transformation for a system of one degree of freedom,

Q = q cosα− p sinα

P = q sinα+ p cosα

satisfies the symplectic condition for any value of the parameter α. Find a
generating function for the transformation. What is the physical significance of
the transformation for α = 0? For α = π/2? Does your generating function
work for both of these cases?

Answer:

The symplectic condition is met if

MJM̃ = J

We can find M from

ζ̇ = Mη̇

which is (
Q̇

Ṗ

)
=
(

cosα − sinα
sinα cosα

)(
q̇
ṗ

)
We know J to be

J =
(

0 1
−1 0

)
Solving MJM̃ we get

M(JM̃) = M

(
− sinα cosα
− cosα − sinα

)

MJM̃ =
(

cosα − sinα
sinα cosα

)(
− sinα cosα
− cosα − sinα

)
=
(

0 1
−1 0

)
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Therefore

MJM̃ = J

and the symplectic condition is met for this transformation. To find the
generating function, I will first attempt an F1 type and proceed to solve, and
check at the end if there are problems with it. Rearranging to solve for p(Q, q)
we have

p = − Q

sinα
+
q cosα
sinα

The related equation for F1 is

p =
∂F1

∂q

Integrating for F1 yields

F1 = − Qq

sinα
+
q2 cosα
2 sinα

+ g(Q)

Solve the other one, that is P (Q, q), it along with its relevant equation is

P = q sinα− Q cosα
sinα

+
q cos2 α
sinα

P = −∂F1

∂Q

Integrating

−F1 = qQ sinα− Q2

2
cotα+ qQ(

1
sinα

− sinα) + h(q)

−F1 = −Q
2

2
cotα+

qQ

sinα
+ h(q)

F1 =
Q2

2
cotα− qQ

sinα
+ h(q)

Using both F1’s we find

F1 = − Qq

sinα
+

1
2
(q2 +Q2) cotα

This has a problem. It blows up, sky high, when α = nπ. But otherwise its
ok, lets put the condition, α 6= nπ. If we solve for F2 we may be able to find
out what the generating function is, and have it work for the holes, α = nπ.
F2(q, P, t)’s relevant equations are

p =
∂F2

∂q
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p =
P

cosα
− q sinα

cosα

F2 =
Pq

cosα
− q2

2
tanα+ f(P )

and

Q =
∂F2

∂P

Q = q cosα− (P − q sinα) tanα

F2 = qP cosα− P 2

2
tanα+ qP

sin2 α

cosα
+ g(q)

F2 = qP (cosα+
1

cosα
− cosα)− P 2

2
tanα+ g(q)

F2 =
qP

cosα
− P 2

2
tanα+ g(q)

So therefore

F2 = −1
2
(q2 + P 2) tanα+

qP

cosα

This works for α = nπ but blows sky high for α = (n+ 1
2 )π. So I’ll put a con-

dition on F2 that α 6= (n+ 1
2 )π. The physical significance of this transformation

for α = 0 is easy to see cause we get

Q = q cos 0− p sin 0 = q

P = q sin 0− p cos 0 = p

This is just the identity transformation, or no rotation. For α = π/2 we get

Q = q cos
π

2
− p sin

π

2
= −p

P = q sin
π

2
− p cos

π

2
= q

Where the p’s and q’s have been exchanged.
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9.6 The transformation equations between two sets of coordinates are

Q = log(1 + q1/2 cos p)

P = 2(1 + q1/2 cos p)q1/2 sin p

• Show directly from these transformation equations that Q, P are canonical
variables if q and p are.

• Show that the function that generates this transformation is

F3 = −(eQ − 1)2 tan p

Answer:

Q and P are considered canonical variables if these transformation equations
satisfy the symplectic condition.

MJM̃ = J

Finding M :

ζ̇ = Mη̇

(
Q̇

Ṗ

)
= M

(
q̇
ṗ

)

Mij =
∂ζi
∂ηj

M =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
∂Q

∂q
=

q−1/2 cos p
2(1 + q1/2 cos p)

∂Q

∂p
=

−q1/2 sin p
1 + q1/2 cos p

∂P

∂q
= q−1/2 sin p+ 2 cos p sin p

∂P

∂p
= 2q1/2 cos p+ 2q cos2 p− 2q sin2 p

Remembering

cos2A− sin2A = cos 2A and 2 sinA cosA = sin 2A

cos(A−B) = cosA cosB + sinA sinB
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we can proceed with ease.

JM =
(

0 1
−1 0

)(
q−1/2 cos p

2(1+q1/2 cos p)
−q1/2 sin p
1+q1/2 cos p

q−1/2 sin p+ sin 2p 2q1/2 cos p+ 2q cos 2p

)

JM =

(
q−1/2 sin p+ sin 2p 2q1/2 cos p+ 2q cos 2p
− q−1/2 cos p

2(1+q1/2 cos p)
q1/2 sin p

1+q1/2 cos p

)
Now

M̃JM =

(
q−1/2 cos p

2(1+q1/2 cos p)
q−1/2 sin p+ sin 2p

−q1/2 sin p
1+q1/2 cos p

2q1/2 cos p+ 2q cos 2p

)(
q−1/2 sin p+ sin 2p 2q1/2 cos p+ 2q cos 2p
− q−1/2 cos p

2(1+q1/2 cos p)
q1/2 sin p

1+q1/2 cos p

)

You may see that the diagonal terms disappear, and we are left with some
algebra for the off-diagonal terms.

M̃JM =
(

0 messy
ugly 0

)
Lets solve for ugly.

ugly =
−q1/2 sin p

1 + q1/2 cos p
(q−1/2 sin p+sin 2p)− q−1/2 cos p

2(1 + q1/2 cos p)
(2q1/2 cos p+2q cos 2p)

ugly =
− sin2 p− q1/2 sin p sin 2p− cos2 p− q1/2 cos p cos 2p

1 + q1/2 cos p

ugly =
−(1 + q1/2(cos 2p cos p+ sin 2p sin p))

1 + q1/2 cos p

ugly =
−(1 + q1/2 cos p)

1 + q1/2 cos p
= −1

Not so ugly anymore, eh? Suddenly ugly became pretty. The same works
for messy except it becomes positive 1 because it has no negative terms out
front. So finally we get

M̃JM =
(

0 1
−1 0

)
= J

which is the symplectic condition, which proves Q and P are canonical vari-
ables. To show that

F3 = −(eQ − 1)2 tan p
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generates this transformation we may take the relevant equations for F3,
solve them, and then solve for our transformation equations.

q = −∂F3

∂p
= −[−(eQ − 1)2 sec2 p]

P = −∂F3

∂Q
= −[−2(eQ − 1) tan p]eQ

Solving for Q

q = (eQ − 1)2 sec2 p

1 +
√
q√

sec2 p
= eQ

Q = ln(1 + q1/2 cos p)

This is one of our transformation equations, now lets plug this into the
expression for P and put P in terms of q and p to get the other one.

P = 2(1 + q1/2 cos p− 1) tan p(1 + q1/2 cos p)

P = 2q1/2 sin p(1 + q1/2 cos p)

Thus F3 is the generating function of our transformation equations.

9.16
For a symmetric rigid body, obtain formulas for evaluating the Poisson brackets

[φ̇, f(θ, φ, ψ)] [ψ̇, f(θ, φ, ψ)]

where θ, φ, and ψ are the Euler angles, and f is any arbitrary function of the
Euler angles.

Answer:

Poisson brackets are defined by

[u, v]q,p =
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

From Goldstein’s section on Euler angles, we learned

φ̇ =
I1b− I1a cos θ

I1 sin2 θ
=
pφ − pψ cos θ
I1 sin2 θ

So calculating

[φ̇, f ] = [
pφ − pψ cos θ
I1 sin2 θ

, f ]
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Note that f = f(θ, φ, ψ) and not of momenta. So our definition becomes

[φ̇, f ] = − ∂φ̇

∂pi

∂f

∂qi

Taking only two derivatives because φ̇ doesn’t depend on pθ. We get

[φ̇, f ] = (− 1
I1 sin2 θ

∂f

∂φ
) + (

cos θ
I1 sin2 θ

∂f

∂ψ
)

[φ̇, f ] =
1

I1 sin2 θ
(− ∂f
∂ψ

+
∂f

∂ψ
cos θ)

For the next relation,

[ψ̇, f ] = − ∂ψ̇
∂pi

∂f

∂qi

and

ψ̇ =
pψ
I3
− pφ − pψ cos θ

I1 sin2 θ
cos θ

This yields

[ψ̇, f ] = −(
1
I3

+
cos2 θ
I1 sin2 θ

)
∂f

∂ψ
+−(− cos θ

I1 sin2 θ

∂f

∂ψ
)

[ψ̇, f ] = −(
I1 sin2 θ

I3I1 sin2 θ
+

I3 cos2 θ
I3I1 sin2 θ

)
∂f

∂ψ
+

I3 cos θ
I3I1 sin2 θ

∂f

∂φ

[ψ̇, f ] =
1

I3I1 sin2 θ
(I3 cos θ

∂f

∂φ
− (I3 cos2 θ + I1 sin2 θ)

∂f

∂ψ
)

Both together, in final form

[φ̇, f ] =
1

I1 sin2 θ
(− ∂f
∂ψ

+
∂f

∂ψ
cos θ)

[ψ̇, f ] =
1

I3I1 sin2 θ
(I3 cos θ

∂f

∂φ
− (I3 cos2 θ + I1 sin2 θ)

∂f

∂ψ
)

9.31
Show by the use of Poisson brackets that for one-dimensional harmonic oscillator
there is a constant of the motion u defined as

u(q, p, t) = ln(p+ imωq)− iωt, ω =

√
k

m

What is the physical significance of this constant of motion?
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Answer:

We have

du

dt
= [u,H] +

∂u

∂t

which we must prove equals zero if u is to be a constant of the motion. The
Hamiltonian is

H(q, p) =
p2

2m
+
kq2

2
So we have

du

dt
=
∂u

∂q

∂H

∂p
− ∂u

∂p

∂H

∂q
+
∂u

∂t

du

dt
=

imω

p+ imωq
(
p

m
)− 1

p+ imωq
(kq)− iω

du

dt
=

iωp− kq

p+ imωq
− iω =

iωp−mω2q

p+ imωq
− iω

du

dt
= iω

p+ iωmq

p+ imωq
− iω = iω − iω

du

dt
= 0

Its physical significance relates to phase.

Show Jacobi’s Identity holds. Show

[f, gh] = g[f, h] + [f, g]h

where the brackets are Poisson.

Answer:

Goldstein verifies Jacobi’s identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

using an efficient notation. I will follow his lead. If we say

ui ≡
∂u

∂ηi
vij ≡

∂v

∂ηi∂ηj

Then a simple way of expressing the Poisson bracket becomes apparent

[u, v] = uiJijvj
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This notation becomes valuable when expressing the the double Poisson
bracket. Here we have

[u, [v, w]] = uiJij [v, w]j = uiJij(vkJklwl)j

Taking the partial with respect to ηj we use the product rule, remembering
Jkl are just constants,

[u, [v, w]] = uiJij(vkjJklwl + vkJklwlj)

doing this for the other two double Poisson brackets, we get 4 more terms,
for a total of 6. Looking at one double partial term, w we see there are only
two terms that show up

JijJkluivkwlj and JjiJkluivkwjl

The first from [u, [v, w]] and the second from [v, [w, u]]. Add them up, real-
izing order of partial is immaterial, and J is antisymmetric:

(Jij + Jji)Jkluivkwlj = 0

All the other terms are made of second partials of u or v and disappear in
the same manner. Therefore

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

Its ok to do the second property the long way:

[f, gh] =
∂f

∂qi

∂(gh)
∂pi

− ∂f

∂pi

∂(gh)
∂qi

[f, gh] =
∂f

∂qi
(
∂g

∂pi
h+ g

∂h

∂pi
)− ∂f

∂pi
(g
∂h

∂qi
+
∂g

∂qi
h)

Grouping terms

[f, gh] =
∂f

∂qi

∂g

∂pi
h− ∂f

∂pi

∂g

∂qi
h+ g

∂f

∂qi

∂h

∂pi
− g

∂f

∂pi

∂h

∂qi

[f, gh] = [f, g]h+ g[f, h]
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