Homework 10: \# 9.2, 9.6, 9.16, 9.31

Michael Good

Nov 2, 2004

9.2

Show that the transformation for a system of one degree of freedom,

$$
\begin{aligned}
& Q=q \cos \alpha-p \sin \alpha \\
& P=q \sin \alpha+p \cos \alpha
\end{aligned}
$$

satisfies the symplectic condition for any value of the parameter α. Find a generating function for the transformation. What is the physical significance of the transformation for $\alpha=0$? For $\alpha=\pi / 2$? Does your generating function work for both of these cases?

Answer:

The symplectic condition is met if

$$
M J \tilde{M}=J
$$

We can find M from

$$
\dot{\zeta}=M \dot{\eta}
$$

which is

$$
\binom{\dot{Q}}{\dot{P}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\dot{q}}{\dot{p}}
$$

We know J to be

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Solving $M J \tilde{M}$ we get

$$
\begin{gathered}
M(J \tilde{M})=M\left(\begin{array}{cc}
-\sin \alpha & \cos \alpha \\
-\cos \alpha & -\sin \alpha
\end{array}\right) \\
M J \tilde{M}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
-\sin \alpha & \cos \alpha \\
-\cos \alpha & -\sin \alpha
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{gathered}
$$

Therefore

$$
M J \tilde{M}=J
$$

and the symplectic condition is met for this transformation. To find the generating function, I will first attempt an F_{1} type and proceed to solve, and check at the end if there are problems with it. Rearranging to solve for $p(Q, q)$ we have

$$
p=-\frac{Q}{\sin \alpha}+\frac{q \cos \alpha}{\sin \alpha}
$$

The related equation for F_{1} is

$$
p=\frac{\partial F_{1}}{\partial q}
$$

Integrating for F_{1} yields

$$
F_{1}=-\frac{Q q}{\sin \alpha}+\frac{q^{2} \cos \alpha}{2 \sin \alpha}+g(Q)
$$

Solve the other one, that is $P(Q, q)$, it along with its relevant equation is

$$
\begin{gathered}
P=q \sin \alpha-\frac{Q \cos \alpha}{\sin \alpha}+\frac{q \cos ^{2} \alpha}{\sin \alpha} \\
P=-\frac{\partial F_{1}}{\partial Q}
\end{gathered}
$$

Integrating

$$
\begin{gathered}
-F_{1}=q Q \sin \alpha-\frac{Q^{2}}{2} \cot \alpha+q Q\left(\frac{1}{\sin \alpha}-\sin \alpha\right)+h(q) \\
-F_{1}=-\frac{Q^{2}}{2} \cot \alpha+\frac{q Q}{\sin \alpha}+h(q) \\
F_{1}=\frac{Q^{2}}{2} \cot \alpha-\frac{q Q}{\sin \alpha}+h(q)
\end{gathered}
$$

Using both F_{1} 's we find

$$
F_{1}=-\frac{Q q}{\sin \alpha}+\frac{1}{2}\left(q^{2}+Q^{2}\right) \cot \alpha
$$

This has a problem. It blows up, sky high, when $\alpha=n \pi$. But otherwise its ok, lets put the condition, $\alpha \neq n \pi$. If we solve for F_{2} we may be able to find out what the generating function is, and have it work for the holes, $\alpha=n \pi$. $F_{2}(q, P, t)$'s relevant equations are

$$
p=\frac{\partial F_{2}}{\partial q}
$$

$$
\begin{gathered}
p=\frac{P}{\cos \alpha}-\frac{q \sin \alpha}{\cos \alpha} \\
F_{2}=\frac{P q}{\cos \alpha}-\frac{q^{2}}{2} \tan \alpha+f(P)
\end{gathered}
$$

and

$$
\begin{gathered}
Q=\frac{\partial F_{2}}{\partial P} \\
Q=q \cos \alpha-(P-q \sin \alpha) \tan \alpha \\
F_{2}=q P \cos \alpha-\frac{P^{2}}{2} \tan \alpha+q P \frac{\sin ^{2} \alpha}{\cos \alpha}+g(q) \\
F_{2}=q P\left(\cos \alpha+\frac{1}{\cos \alpha}-\cos \alpha\right)-\frac{P^{2}}{2} \tan \alpha+g(q) \\
F_{2}=\frac{q P}{\cos \alpha}-\frac{P^{2}}{2} \tan \alpha+g(q)
\end{gathered}
$$

So therefore

$$
F_{2}=-\frac{1}{2}\left(q^{2}+P^{2}\right) \tan \alpha+\frac{q P}{\cos \alpha}
$$

This works for $\alpha=n \pi$ but blows sky high for $\alpha=\left(n+\frac{1}{2}\right) \pi$. So I'll put a condition on F_{2} that $\alpha \neq\left(n+\frac{1}{2}\right) \pi$. The physical significance of this transformation for $\alpha=0$ is easy to see cause we get

$$
\begin{aligned}
& Q=q \cos 0-p \sin 0=q \\
& P=q \sin 0-p \cos 0=p
\end{aligned}
$$

This is just the identity transformation, or no rotation. For $\alpha=\pi / 2$ we get

$$
\begin{aligned}
Q & =q \cos \frac{\pi}{2}-p \sin \frac{\pi}{2}=-p \\
P & =q \sin \frac{\pi}{2}-p \cos \frac{\pi}{2}=q
\end{aligned}
$$

Where the p 's and q 's have been exchanged.
9.6 The transformation equations between two sets of coordinates are

$$
\begin{gathered}
Q=\log \left(1+q^{1 / 2} \cos p\right) \\
P=2\left(1+q^{1 / 2} \cos p\right) q^{1 / 2} \sin p
\end{gathered}
$$

- Show directly from these transformation equations that Q, P are canonical variables if q and p are.
- Show that the function that generates this transformation is

$$
F_{3}=-\left(e^{Q}-1\right)^{2} \tan p
$$

Answer:
Q and P are considered canonical variables if these transformation equations satisfy the symplectic condition.

$$
M J \tilde{M}=J
$$

Finding M :

$$
\begin{gathered}
\dot{\zeta}=M \dot{\eta} \\
\binom{\dot{Q}}{\dot{P}}=M\binom{\dot{q}}{\dot{p}} \\
M_{i j}=\frac{\partial \zeta_{i}}{\partial \eta_{j}} \quad M=\left(\begin{array}{cc}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right) \\
\frac{\partial Q}{\partial q}=\frac{q^{-1 / 2} \cos p}{2\left(1+q^{1 / 2} \cos p\right)} \\
\frac{\partial Q}{\partial p}=\frac{-q^{1 / 2} \sin p}{1+q^{1 / 2} \cos p} \\
\frac{\partial P}{\partial q}=q^{-1 / 2} \sin p+2 \cos p \sin p \\
\frac{\partial P}{\partial p}=2 q^{1 / 2} \cos p+2 q \cos ^{2} p-2 q \sin ^{2} p
\end{gathered}
$$

Remembering

$$
\begin{gathered}
\cos ^{2} A-\sin ^{2} A=\cos 2 A \quad \text { and } \quad 2 \sin A \cos A=\sin 2 A \\
\cos (A-B)=\cos A \cos B+\sin A \sin B
\end{gathered}
$$

we can proceed with ease.

$$
\begin{aligned}
& J M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{q^{-1 / 2} \cos p}{2\left(1+q^{1 / 2} \cos p\right)} & \frac{-q^{1 / 2} \sin p}{1+q^{1 / 2} \cos p} \\
q^{-1 / 2} \sin p+\sin 2 p & 2 q^{1 / 2} \cos p+2 q \cos 2 p
\end{array}\right) \\
& J M=\left(\begin{array}{cc}
q^{-1 / 2} \sin p+\sin 2 p & 2 q^{1 / 2} \cos p+2 q \cos 2 p \\
-\frac{q^{-1 / 2} \cos p}{2\left(1+q^{1 / 2} \cos p\right)} & \frac{q^{1 / 2} \sin p}{1+q^{1 / 2} \cos p}
\end{array}\right)
\end{aligned}
$$

Now
$\tilde{M} J M=\left(\begin{array}{cc}\frac{q^{-1 / 2} \cos p}{2\left(1+q^{1 / 2} \cos p\right)} & q^{-1 / 2} \sin p+\sin 2 p \\ \frac{-q^{1 / 2} \sin p}{1+q^{1 / 2} \cos p} & 2 q^{1 / 2} \cos p+2 q \cos 2 p\end{array}\right)\left(\begin{array}{cc}q^{-1 / 2} \sin p+\sin 2 p & 2 q^{1 / 2} \cos p+2 q \cos 2 p \\ -\frac{q^{-1 / 2} \cos p}{2\left(1+q^{1 / 2} \cos p\right)} & \frac{q^{1 / 2} \sin p}{1+q^{1 / 2} \cos p}\end{array}\right)$
You may see that the diagonal terms disappear, and we are left with some algebra for the off-diagonal terms.

$$
\tilde{M} J M=\left(\begin{array}{cc}
0 & \text { messy } \\
\text { ugly } & 0
\end{array}\right)
$$

Lets solve for ugly.

$$
\begin{gathered}
u g l y=\frac{-q^{1 / 2} \sin p}{1+q^{1 / 2} \cos p}\left(q^{-1 / 2} \sin p+\sin 2 p\right)-\frac{q^{-1 / 2} \cos p}{2\left(1+q^{1 / 2} \cos p\right)}\left(2 q^{1 / 2} \cos p+2 q \cos 2 p\right) \\
u g l y=\frac{-\sin ^{2} p-q^{1 / 2} \sin p \sin 2 p-\cos ^{2} p-q^{1 / 2} \cos p \cos 2 p}{1+q^{1 / 2} \cos p} \\
u g l y=\frac{-\left(1+q^{1 / 2}(\cos 2 p \cos p+\sin 2 p \sin p)\right)}{1+q^{1 / 2} \cos p} \\
u g l y=\frac{-\left(1+q^{1 / 2} \cos p\right)}{1+q^{1 / 2} \cos p}=-1
\end{gathered}
$$

Not so ugly anymore, eh? Suddenly ugly became pretty. The same works for messy except it becomes positive 1 because it has no negative terms out front. So finally we get

$$
\tilde{M} J M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=J
$$

which is the symplectic condition, which proves Q and P are canonical variables. To show that

$$
F_{3}=-\left(e^{Q}-1\right)^{2} \tan p
$$

generates this transformation we may take the relevant equations for F_{3}, solve them, and then solve for our transformation equations.

$$
\begin{aligned}
q & =-\frac{\partial F_{3}}{\partial p}=-\left[-\left(e^{Q}-1\right)^{2} \sec ^{2} p\right] \\
P & =-\frac{\partial F_{3}}{\partial Q}=-\left[-2\left(e^{Q}-1\right) \tan p\right] e^{Q}
\end{aligned}
$$

Solving for Q

$$
\begin{gathered}
q=\left(e^{Q}-1\right)^{2} \sec ^{2} p \\
1+\frac{\sqrt{q}}{\sqrt{\sec ^{2} p}}=e^{Q} \\
Q=\ln \left(1+q^{1 / 2} \cos p\right)
\end{gathered}
$$

This is one of our transformation equations, now lets plug this into the expression for P and put P in terms of q and p to get the other one.

$$
\begin{gathered}
P=2\left(1+q^{1 / 2} \cos p-1\right) \tan p\left(1+q^{1 / 2} \cos p\right) \\
P=2 q^{1 / 2} \sin p\left(1+q^{1 / 2} \cos p\right)
\end{gathered}
$$

Thus F_{3} is the generating function of our transformation equations.

9.16

For a symmetric rigid body, obtain formulas for evaluating the Poisson brackets

$$
[\dot{\phi}, f(\theta, \phi, \psi)] \quad[\dot{\psi}, f(\theta, \phi, \psi)]
$$

where θ, ϕ, and ψ are the Euler angles, and f is any arbitrary function of the Euler angles.

Answer:
Poisson brackets are defined by

$$
[u, v]_{q, p}=\frac{\partial u}{\partial q_{i}} \frac{\partial v}{\partial p_{i}}-\frac{\partial u}{\partial p_{i}} \frac{\partial v}{\partial q_{i}}
$$

From Goldstein's section on Euler angles, we learned

$$
\dot{\phi}=\frac{I_{1} b-I_{1} a \cos \theta}{I_{1} \sin ^{2} \theta}=\frac{p_{\phi}-p_{\psi} \cos \theta}{I_{1} \sin ^{2} \theta}
$$

So calculating

$$
[\dot{\phi}, f]=\left[\frac{p_{\phi}-p_{\psi} \cos \theta}{I_{1} \sin ^{2} \theta}, f\right]
$$

Note that $f=f(\theta, \phi, \psi)$ and not of momenta. So our definition becomes

$$
[\dot{\phi}, f]=-\frac{\partial \dot{\phi}}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}
$$

Taking only two derivatives because $\dot{\phi}$ doesn't depend on p_{θ}. We get

$$
\begin{gathered}
{[\dot{\phi}, f]=\left(-\frac{1}{I_{1} \sin ^{2} \theta} \frac{\partial f}{\partial \phi}\right)+\left(\frac{\cos \theta}{I_{1} \sin ^{2} \theta} \frac{\partial f}{\partial \psi}\right)} \\
{[\dot{\phi}, f]=\frac{1}{I_{1} \sin ^{2} \theta}\left(-\frac{\partial f}{\partial \psi}+\frac{\partial f}{\partial \psi} \cos \theta\right)}
\end{gathered}
$$

For the next relation,

$$
[\dot{\psi}, f]=-\frac{\partial \dot{\psi}}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}
$$

and

$$
\dot{\psi}=\frac{p_{\psi}}{I_{3}}-\frac{p_{\phi}-p_{\psi} \cos \theta}{I_{1} \sin ^{2} \theta} \cos \theta
$$

This yields

$$
\begin{gathered}
{[\dot{\psi}, f]=-\left(\frac{1}{I_{3}}+\frac{\cos ^{2} \theta}{I_{1} \sin ^{2} \theta}\right) \frac{\partial f}{\partial \psi}+-\left(-\frac{\cos \theta}{I_{1} \sin ^{2} \theta} \frac{\partial f}{\partial \psi}\right)} \\
{[\dot{\psi}, f]=-\left(\frac{I_{1} \sin ^{2} \theta}{I_{3} I_{1} \sin ^{2} \theta}+\frac{I_{3} \cos ^{2} \theta}{I_{3} I_{1} \sin ^{2} \theta}\right) \frac{\partial f}{\partial \psi}+\frac{I_{3} \cos \theta}{I_{3} I_{1} \sin ^{2} \theta} \frac{\partial f}{\partial \phi}} \\
{[\dot{\psi}, f]=\frac{1}{I_{3} I_{1} \sin ^{2} \theta}\left(I_{3} \cos \theta \frac{\partial f}{\partial \phi}-\left(I_{3} \cos ^{2} \theta+I_{1} \sin ^{2} \theta\right) \frac{\partial f}{\partial \psi}\right)}
\end{gathered}
$$

Both together, in final form

$$
\begin{gathered}
{[\dot{\phi}, f]=\frac{1}{I_{1} \sin ^{2} \theta}\left(-\frac{\partial f}{\partial \psi}+\frac{\partial f}{\partial \psi} \cos \theta\right)} \\
{[\dot{\psi}, f]=\frac{1}{I_{3} I_{1} \sin ^{2} \theta}\left(I_{3} \cos \theta \frac{\partial f}{\partial \phi}-\left(I_{3} \cos ^{2} \theta+I_{1} \sin ^{2} \theta\right) \frac{\partial f}{\partial \psi}\right)}
\end{gathered}
$$

9.31

Show by the use of Poisson brackets that for one-dimensional harmonic oscillator there is a constant of the motion u defined as

$$
u(q, p, t)=\ln (p+i m \omega q)-i \omega t, \omega=\sqrt{\frac{k}{m}}
$$

What is the physical significance of this constant of motion?

Answer:

We have

$$
\frac{d u}{d t}=[u, H]+\frac{\partial u}{\partial t}
$$

which we must prove equals zero if u is to be a constant of the motion. The Hamiltonian is

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{k q^{2}}{2}
$$

So we have

$$
\begin{gathered}
\frac{d u}{d t}=\frac{\partial u}{\partial q} \frac{\partial H}{\partial p}-\frac{\partial u}{\partial p} \frac{\partial H}{\partial q}+\frac{\partial u}{\partial t} \\
\frac{d u}{d t}=\frac{i m \omega}{p+i m \omega q}\left(\frac{p}{m}\right)-\frac{1}{p+i m \omega q}(k q)-i \omega \\
\frac{d u}{d t}=\frac{i \omega p-k q}{p+i m \omega q}-i \omega=\frac{i \omega p-m \omega^{2} q}{p+i m \omega q}-i \omega \\
\frac{d u}{d t}=i \omega \frac{p+i \omega m q}{p+i m \omega q}-i \omega=i \omega-i \omega \\
\frac{d u}{d t}=0
\end{gathered}
$$

Its physical significance relates to phase.

Show Jacobi's Identity holds. Show

$$
[f, g h]=g[f, h]+[f, g] h
$$

where the brackets are Poisson.
Answer:

Goldstein verifies Jacobi's identity

$$
[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0
$$

using an efficient notation. I will follow his lead. If we say

$$
u_{i} \equiv \frac{\partial u}{\partial \eta_{i}} \quad v_{i j} \equiv \frac{\partial v}{\partial \eta_{i} \partial \eta_{j}}
$$

Then a simple way of expressing the Poisson bracket becomes apparent

$$
[u, v]=u_{i} J_{i j} v_{j}
$$

This notation becomes valuable when expressing the the double Poisson bracket. Here we have

$$
[u,[v, w]]=u_{i} J_{i j}[v, w]_{j}=u_{i} J_{i j}\left(v_{k} J_{k l} w_{l}\right)_{j}
$$

Taking the partial with respect to η_{j} we use the product rule, remembering $J_{k l}$ are just constants,

$$
[u,[v, w]]=u_{i} J_{i j}\left(v_{k j} J_{k l} w_{l}+v_{k} J_{k l} w_{l j}\right)
$$

doing this for the other two double Poisson brackets, we get 4 more terms, for a total of 6 . Looking at one double partial term, w we see there are only two terms that show up

$$
J_{i j} J_{k l} u_{i} v_{k} w_{l j} \quad \text { and } \quad J_{j i} J_{k l} u_{i} v_{k} w_{j l}
$$

The first from $[u,[v, w]]$ and the second from $[v,[w, u]]$. Add them up, realizing order of partial is immaterial, and J is antisymmetric:

$$
\left(J_{i j}+J_{j i}\right) J_{k l} u_{i} v_{k} w_{l j}=0
$$

All the other terms are made of second partials of u or v and disappear in the same manner. Therefore

$$
[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0
$$

Its ok to do the second property the long way:

$$
\begin{gathered}
{[f, g h]=\frac{\partial f}{\partial q_{i}} \frac{\partial(g h)}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial(g h)}{\partial q_{i}}} \\
{[f, g h]=\frac{\partial f}{\partial q_{i}}\left(\frac{\partial g}{\partial p_{i}} h+g \frac{\partial h}{\partial p_{i}}\right)-\frac{\partial f}{\partial p_{i}}\left(g \frac{\partial h}{\partial q_{i}}+\frac{\partial g}{\partial q_{i}} h\right)}
\end{gathered}
$$

Grouping terms

$$
\begin{gathered}
{[f, g h]=\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} h-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} h+g \frac{\partial f}{\partial q_{i}} \frac{\partial h}{\partial p_{i}}-g \frac{\partial f}{\partial p_{i}} \frac{\partial h}{\partial q_{i}}} \\
{[f, g h]=[f, g] h+g[f, h]}
\end{gathered}
$$

