Homework 10: # 9.2, 9.6, 9.16, 9.31

Michael Good
Nov 2, 2004

9.2
Show that the transformation for a system of one degree of freedom,

Q =qcosa —psina

P =g¢gsina+pcosa
satisfies the symplectic condition for any value of the parameter «. Find a
generating function for the transformation. What is the physical significance of

the transformation for a = 0?7 For o = /2?7 Does your generating function
work for both of these cases?

Answer:
The symplectic condition is met if

MJM =J
We can find M from

(= Mn

[ cosa —sina q
“ \ sina  cosa P

which is

¢

We know J to be

Solving M JM we get

—cosa —sina

MINT — cpsa —sina —sina cqsoz _ 0 1
sina  cos« —cosa —sino -1 0

M(JM)—M( —sina cosa )




Therefore

MJM = J

and the symplectic condition is met for this transformation. To find the
generating function, I will first attempt an F; type and proceed to solve, and
check at the end if there are problems with it. Rearranging to solve for p(Q, q)
we have

Q q cos «
p=—— + —
sin «v sin «v
The related equation for F} is
_O0Fy
= o0

Integrating for F; yields

2 5
Qg ceosa oy

P =—— .
sin o 2sin

Solve the other one, that is P(Q, q), it along with its relevant equation is

Qcosa qcos’a

P =g¢gsina— — -
sin o sin «v
F
p:_b
oQ

Integrating

2
1
—F =q¢Qsina — @ cota + qQ(—— —sina) + h(q)
2 sin «

2
—-F = & cot a + ﬂ + h(q)
2 sin o
2
= Q—cotaf ﬂ + h(q)
2 sin o
Using both Fy’s we find
Qq

Fi=-

1 5 2
sin o +§(q + @) cota

This has a problem. It blows up, sky high, when o = nw. But otherwise its
ok, lets put the condition, o # nw. If we solve for F» we may be able to find
out what the generating function is, and have it work for the holes, o = nn.
F5(q, P,t)’s relevant equations are

_oF,
p= dq



P gsina

p =
CcOoS & COS &
P 2
F, = q fq—tana+f(P)
COS « 2
and
0F,
©=9p

Q =qcosa— (P —gsina)tana

2

2 sin® a

P
Fy = qPcosa — — tana + ¢qP +g(q)
2 cos o
P2
Fy = qP(cosa + —cosa) — — tana + g(q)
cos o 2
P P?
F=-2" " tana+g(q)
cos o 2

So therefore
1 P
Fy = ——(¢* + P*)tana + A
2 cos o
This works for @ = n7 but blows sky high for a = (n+ %)71’ So I'll put a con-

dition on F5 that oo # (n+ %)F The physical significance of this transformation
for a = 0 is easy to see cause we get

@ =qcos0—psin0 =gq
P =gsin0 —pcosO=p

This is just the identity transformation, or no rotation. For oo = 7/2 we get

Q:qcosgfpsing:fp

T m
P: 1 — — —_ =
qst p(2052 q

Where the p’s and ¢’s have been exchanged.



9.6 The transformation equations between two sets of coordinates are
Q =log(1+ ¢'/* cosp)
P =2(1+4q"?cosp)q'/?sinp

e Show directly from these transformation equations that ), P are canonical
variables if ¢ and p are.

e Show that the function that generates this transformation is

Fy=—(e? —1)%tanp

Answer:

@ and P are considered canonical variables if these transformation equations
satisfy the symplectic condition.

MJM =J
Finding M:
¢ =M
Q q
=M -
(7)-+(
oG 2 o
w= 0w (B B
j dq op
0Q _ q /2 cosp
9q  2(1+4 ¢'/2cosp)
0Q —q"?sinp
op 1+ q'/2cosp
OP
— = q_l/2 sinp + 2cospsinp
dq
oP
— = 2q1/2 cos p + 2q cos® p — 2gsin® p
dp
Remembering

cos> A —sin® A = cos2A and 2sin Acos A = sin 24
cos(A — B) = cos Acos B + sin Asin B



we can proceed with ease.

0 1 _a M?cosp —¢*sinp
JM = 2(14q'/2 cos p) 14+q1/2 cosp
—-1.0 ¢ ?sinp+sin2p 2¢Y?cosp+ 2gcos2p

q_l/2 cos p ql/2 sin p

~1/2ginp + sin 2 2¢1/2 cosp + 2q cos 2
IM — q p P 2q p q P
" 2(144¢'/2 cos p) 14+q'/2 cosp

Now

q71/2005p —1/2 sin . —1/2 & . 1/2
~ AT + sin 2 q sinp +sin2p 2q¢/“cosp + 2qcos 2p
MJM = ( 2(1+?1é2 Cosp) 1 P P ) < qil/2 cos p ql/zsinp

/ .
—q'/?sinp 1/2 —_9 ‘"cosp _q ' ~smp
2q / 2(1+q1/2 cos p) 1+q1/2 cosp

Thq /% cosp cosp + 2q cos 2p

You may see that the diagonal terms disappear, and we are left with some
algebra for the off-diagonal terms.

MM — 0 messy
ugly 0

Lets solve for ugly.

g /% cosp
2(1 + q'/2 cosp)

—q¢'/?sinp

m(q’l/2 sin p-+sin 2p)— (2¢"/? cos p+2q cos 2p)

ugly =

—sin®p — ¢/?sinpsin 2p — cos? p — ¢/ cos pcos 2p

ugly =
9 1+ ¢q'/2cosp

—(1 4 ¢*/?(cos 2p cos p + sin 2psin p))
1+ q/2cosp

ugly =

—(1 4 ¢'/? cosp)

-1
1+ qg/2cosp

ugly =

Not so ugly anymore, eh? Suddenly ugly became pretty. The same works
for messy except it becomes positive 1 because it has no negative terms out
front. So finally we get

- 0 1
M.]M_<_1 0)—J

which is the symplectic condition, which proves () and P are canonical vari-
ables. To show that

Fy=—(e? —1)*tanp



generates this transformation we may take the relevant equations for Fj,
solve them, and then solve for our transformation equations.

OF:
1= =52 = (2~ 1 sec?y]
P= 7% = —[-2(e? — 1) tan ple®

Solving for @

qg=(e? —1)%sec?p

1+ @

Ve,
v/secZp
Q=1In(1+ q'? cosp)

This is one of our transformation equations, now lets plug this into the
expression for P and put P in terms of ¢ and p to get the other one.

P=2(1+ q'/? cosp — 1)tanp(1l + q'"? cosp)

P =2¢"?sinp(1 + ¢*/? cos p)

Thus Fj is the generating function of our transformation equations.

9.16
For a symmetric rigid body, obtain formulas for evaluating the Poisson brackets

6, £(0,0,0)] [, £(0,6,0)]

where 0, ¢, and 1 are the Euler angles, and f is any arbitrary function of the
Euler angles.

Answer:

Poisson brackets are defined by

[, v] _ Ou Ov _8u8v
TP 9g; Op; Opi Ogs

From Goldstein’s section on Euler angles, we learned

QB_Ilb—IlaCOSG_ptﬁ—pd,COSH
~ Iisin®9  Isin’0

So calculating

. Dy — Py cos O
[qsvf}_[ Ilsin29 f]



Note that f = f(6, ¢,1) and not of momenta. So our definition becomes

b Of
[¢7 f] = - ] ]
Ip; 9q;
Taking only two derivatives because (;5 doesn’t depend on py. We get
1 of cosf Of

0.1 = e as) T Ganta au

1 8f of
I sin20( oY + %C%e)

[0, /] =
For the next relation,

)
DS

and

. — 0
¢:@7P7¢ p.wzcos cosf
I3 I;sin” 6

This yields

. _ 1 cos?f  Of cos 6 g
b, f1= (13+1151n 0 31/1 —(= I, sin? 0 Oy

I, sin% 0 Iscos?0  Of I3cosf Of

)

[, ) = _(1311 sin20 | LI sin20 00 | I,I sin20 06
[, f] = m(@ cos@a—£ — (I3 cos? 0 + I, sin® §) gi)
Both together, in final form
6.1 = g (g 5 o0s0)
[, f] = ﬁ([{g cos Gg—f; — (I3 cos? 0 + I, sin® G)%)

9.31
Show by the use of Poisson brackets that for one-dimensional harmonic oscillator

there is a constant of the motion u defined as

k
u(q,p,t) = In(p + imwq) — iwt,w = \/7
m

What is the physical significance of this constant of motion?




Answer:

‘We have

du ou
u. Hl+ ==
o~ A

which we must prove equals zero if u is to be a constant of the motion. The
Hamiltonian is

2 2
P kq
H(q,p) = om T

So we have

du _0udH oudH  ou
dt — dq dp  Op Iq ot
du imw P 1

) (kq) — iw

dt p+iqu(E _eriqu

du  iwp—kq . iwp — mw?q .
= = —" -

— = , = - w
dt  p+imwq P+ imwq
du . p+iwmg . ) _
— =W — W = W — W
dt P+ tmwq
du
-0
dt
Its physical significance relates to phase.
Show Jacobi’s Identity holds. Show
[f,gh] = g[f,h] + [f, gl
where the brackets are Poisson.
Answer:
Goldstein verifies Jacobi’s identity
[u» [v7 w]] + [va [wa u]] + [wv [ua v]] =0

using an efficient notation. I will follow his lead. If we say

=t o0
T 8771 E (917287]]

Then a simple way of expressing the Poisson bracket becomes apparent

[u, 1}] = uiJijvj




This notation becomes valuable when expressing the the double Poisson

bracket. Here we have
[w, [v, w]] = wJs5[v, w]; = ;i (v Jiwr)

Taking the partial with respect to 1; we use the product rule, remembering

Jx; are just constants,
[u, [v, w]] = u;Jij (VijJw + viJrwiy)

doing this for the other two double Poisson brackets, we get 4 more terms,
for a total of 6. Looking at one double partial term, w we see there are only
two terms that show up

Jiijluivkwlj and inJkluivkwjl

The first from [u, [v, w]] and the second from [v, [w, u]]. Add them up, real-

izing order of partial is immaterial, and J is antisymmetric:
(Jij + Jji) Jruwvgwy; =0

All the other terms are made of second partials of u or v and disappear in
the same manner. Therefore

[u) [Uv w]] + [Ua [w’ u]] + [w7 [u’ U]] =0
Its ok to do the second property the long way:

o gh) = 2L 2ah) _ 0F 2lgh)
’ 0q; Op; Op; 0g;
_0f 99, Oh, Of Oh O

Grouping terms

h)

_0fdg, 0fdg,  0f Oh _ Of Oh

[fv gh] = dq; Op; Op; Oq; g&qi Op; gapi 0q;

[f,gh]l = [f, glh + g[f, D]



