Homework 5: \# 3.31, 3.32, 3.7a

Michael Good

Sept 27, 2004
3.7a Show that the angle of recoil of the target particle relative to the incident direction of the scattered particle is simply $\Phi=\frac{1}{2}(\pi-\Theta)$.

Answer:

It helps to draw a figure for this problem. I don't yet know how to do this in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$, but I do know that in the center of mass frame both the particles momentum are equal.

$$
m_{1} v_{1}^{\prime}=m_{2} v_{2}^{\prime}
$$

Where the prime indicates the CM frame. If you take equation (3.2) Goldstein, then its easy to understand the equation after (3.110) for the relationship of the relative speed v after the collision to the speed in the CM system.

$$
v_{1}^{\prime}=\frac{\mu}{m_{1}} v=\frac{m_{2}}{m_{1}+m_{2}} v
$$

Here, v is the relative speed after the collision, but as Goldstein mentions because elastic collisions conserve kinetic energy, (I'm assuming this collision is elastic even though it wasn't explicitly stated), we have $v=v_{0}$, that is the relative speed after collision is equal to the initial velocity of the first particle in the laboratory frame (the target particle being stationary).

$$
v_{1}^{\prime}=\frac{m_{2}}{m_{1}+m_{2}} v_{0}
$$

This equation works the same way for v_{2}^{\prime}

$$
v_{2}^{\prime}=\frac{m_{1}}{m_{1}+m_{2}} v_{0}
$$

From conservation of momentum, we know that the total momentum in the CM frame is equal to the incident(and thus total) momentum in the laboratory frame.

$$
\left(m_{1}+m_{2}\right) v_{c m}=m_{1} v_{0}
$$

We see

$$
v_{c m}=\frac{m_{1}}{m_{1}+m_{2}} v_{0}
$$

This is the same as v_{2}^{\prime}

$$
v_{2}^{\prime}=v_{c m}
$$

If we draw both frames in the same diagram, we can see an isosceles triangle where the two equal sides are v_{2}^{\prime} and $v_{c m}$.

$$
\begin{aligned}
& \Phi+\Phi+\Theta=\pi \\
& \Phi=\frac{1}{2}(\pi-\Theta)
\end{aligned}
$$

3.31 Examine the scattering produced by a repulsive central force $f+k r^{-3}$. Show that the differential cross section is given by

$$
\sigma(\Theta) d \Theta=\frac{k}{2 E} \frac{(1-x) d x}{x^{2}(2--x)^{2} \sin \pi x}
$$

where x is the ratio of Θ / π and E is the energy.

Answer:

The differential cross section is given by Goldstein (3.93):

$$
\sigma(\Theta)=\frac{s}{\sin \Theta}\left|\frac{d s}{d \Theta}\right|
$$

We must solve for s, and $d s / d \Theta$. Lets solve for $\Theta(s)$ first, take its derivative with respect to s, and invert it to find $d s / d \Theta$. We can solve for $\Theta(s)$ by using Goldstein (3.96):

$$
\Theta(s)=\pi-2 \int_{r_{m}}^{\infty} \frac{s d r}{r \sqrt{r^{2}\left(1-\frac{V(r)}{E}\right)-s^{2}}}
$$

What is $V(r)$ for our central force of $f=k / r^{3}$? It's found from $-d V / d r=f$.

$$
V(r)=\frac{k}{2 r^{2}}
$$

Plug this in to Θ and we have

$$
\Theta(s)=\pi-2 \int_{r_{m}}^{\infty} \frac{s d r}{r \sqrt{r^{2}-\left(s^{2}+\frac{k}{2 E}\right)}}
$$

Before taking this integral, I'd like to put it in a better form. If we look at the energy of the incoming particle,

$$
E=\frac{1}{2} m r_{m}^{2} \dot{\theta}^{2}+\frac{k}{2 r_{m}^{2}}=\frac{s^{2} E}{r_{m}^{2}}+\frac{k}{2 r_{m}^{2}}
$$

where from Goldstein page 113,

$$
\dot{\theta}^{2}=\frac{2 s^{2} E}{m r_{m}^{4}}
$$

We can solve for $s^{2}+\frac{k}{2 E}$, the term in Θ,

$$
r_{m}^{2}=s^{2}+\frac{k}{2 E}
$$

Now we are in a better position to integrate,

$$
\Theta(s)=\pi-2 \int_{r_{m}}^{\infty} \frac{s d r}{r \sqrt{r^{2}-r_{m}^{2}}}=\pi-2 s\left[\left.\frac{1}{r_{m}} \cos ^{-1} \frac{r_{m}}{r}\right|_{r_{m}} ^{\infty}\right]=\pi-2 s \frac{1}{r_{m}}\left(\frac{\pi}{2}\right)=\pi\left(1-\frac{s}{\sqrt{s^{2}+\frac{k}{2 E}}}\right)
$$

Goldstein gave us $x=\Theta / \pi$, so now we have an expression for x in terms of s, lets solve for s

$$
\begin{gathered}
x=\frac{\Theta}{\pi}=1-\frac{s}{\sqrt{s^{2}+\frac{k}{2 E}}} \\
s^{2}=\left(s^{2}+\frac{k}{2 E}\right)(1-x)^{2} \quad \rightarrow \quad s^{2}=\frac{\frac{k}{2 E}(1-x)^{2}}{1-(1-x)^{2}} \\
s=\sqrt{\frac{k}{2 E}} \frac{(1-x)}{\sqrt{x(2-x)}}
\end{gathered}
$$

Now that we have s we need only $d s / d \Theta$ to find the cross section. Solving $d \Theta / d s$ and then taking the inverse,

$$
\begin{gathered}
\frac{d \Theta}{d s}=\pi s\left(-\frac{1}{2}\left(s^{2}+\frac{k}{2 E}\right)^{-\frac{3}{2}}\right) 2 s+\frac{\pi}{\sqrt{s^{2}+\frac{k}{2 E}}} \\
\frac{d \Theta}{d s}=\frac{-\pi s^{2}+\pi\left(s^{2}+\frac{k}{2 E}\right)}{\left(s^{2}+\frac{k}{2 E}\right)^{\frac{3}{2}}}=\frac{\frac{\pi k}{2 E}}{\left(s^{2}+\frac{k}{2 E}\right)^{\frac{3}{2}}}
\end{gathered}
$$

So

$$
\frac{d s}{d \Theta}=\frac{2 E\left(s^{2}+\frac{k}{2 E}\right)^{\frac{3}{2}}}{\pi k}
$$

Putting everything in terms of x,

$$
s^{2}+\frac{k}{2 E}=\frac{k}{2 E} \frac{(1-x)^{2}}{x(2-x)}+\frac{k}{2 E}=\frac{k}{2 E} \frac{1}{x(2-x)}
$$

So now,

$$
\sigma(\Theta)=\frac{s}{\sin \Theta}\left|\frac{d s}{d \Theta}\right|=\frac{\sqrt{\frac{k}{2 E}} \frac{(1-x)}{\sqrt{x(2-x)}}}{\sin \pi x} \frac{2 E\left(s^{2}+\frac{k}{2 E}\right)^{\frac{3}{2}}}{\pi k}=\frac{\sqrt{\frac{k}{2 E}} \frac{(1-x)}{\sqrt{x(2-x)}}}{\sin \pi x} \frac{2 E\left(\frac{k}{2 E} \frac{1}{x(2-x)}\right)^{\frac{3}{2}}}{\pi k}=
$$

And this most beautiful expression becomes..

$$
\sigma(\Theta)=\frac{1}{\sin \pi x} \frac{1}{\pi}\left(\frac{k}{2 E}\right)^{\frac{1}{2}}\left(\frac{2 E}{k}\right)\left(\frac{k}{2 E}\right)^{\frac{3}{2}} \frac{1-x}{\sqrt{x(2-x)}} \frac{1}{(x(2-x))^{\frac{3}{2}}}
$$

After a bit more algebra...

$$
\sigma(\Theta)=\frac{k}{2 E} \frac{1}{\pi} \frac{1}{\sin \pi x} \frac{1-x}{(x(2-x))^{2}}
$$

And since we know $d \Theta=\pi d x$,

$$
\sigma(\Theta) d \Theta=\frac{k}{2 E} \frac{(1-x) d x}{x^{2}(2-x)^{2} \sin \pi x}
$$

3.32 A central force potential frequently encountered in nuclear physics is the rectangular well, defined by the potential

$$
\begin{gathered}
V=0 \\
V>a \\
V=-V_{0} \quad r \leq a
\end{gathered}
$$

Show that the scattering produced by such a potential in classical mechanics is identical with the refraction of light rays by a sphere of radius a and relative index of refraction

$$
n=\sqrt{\frac{E+V_{0}}{E}}
$$

This equivalence demonstrates why it was possible to explain refraction phenomena both by Huygen's waves and by Newton's mechanical corpuscles. Show also that the differential cross section is

$$
\sigma(\Theta)=\frac{n^{2} a^{2}}{4 \cos \frac{\Theta}{2}} \frac{\left(n \cos \frac{\Theta}{2}-1\right)\left(n-\cos \frac{\Theta}{2}\right)}{\left(1+n^{2}-2 n \cos \frac{\Theta}{2}\right)^{2}}
$$

What is the total cross section?

Answer:

Ignoring the first part of the problem, and just solving for the differential cross section,

$$
\sigma(\Theta)=\frac{s d s}{\sin \Theta d \Theta}
$$

If the scattering is the same as light refracted from a sphere, then putting our total angle scattered, Θ, in terms of the angle of incidence and transmission,

$$
\Theta=2\left(\theta_{1}-\theta_{2}\right)
$$

This is because the light is refracted from its horizontal direction twice, after hitting the sphere and leaving the sphere. Where $\theta_{1}-\theta_{2}$ is the angle south of east for one refraction.

We know $\sin \theta_{1}=s / a$ and using Snell's law, we know

$$
n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \rightarrow \sin \theta_{2}=\frac{s}{n a}
$$

Expressing Θ in terms of just s and a we have

$$
\Theta=2\left(\arcsin \frac{s}{a}-\arcsin \frac{s}{n a}\right)
$$

Now the plan is, to solve for s^{2} and then $d s^{2} / d \Theta$ and solve for the cross section via

$$
\sigma=\frac{s d s}{\sin \Theta d \Theta}=\frac{1}{2 \sin \Theta} \frac{d s^{2}}{d \Theta}=\frac{1}{4 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2}} \frac{d s^{2}}{d \Theta}
$$

Here goes. Solve for $\sin \frac{\Theta}{2}$ and $\cos \frac{\Theta}{2}$ in terms of s
$\sin \frac{\Theta}{2}=\sin \left(\arcsin \frac{s}{a}-\arcsin \frac{s}{n a}\right)=\sin \arcsin \frac{s}{a} \cos \arcsin \frac{s}{n a}-\cos \arcsin \frac{s}{a} \sin \arcsin \frac{s}{n a}$
This is

$$
=\frac{s}{a} \cos \left(\arccos \sqrt{1-\frac{s^{2}}{n^{2} a^{2}}}\right)-\cos \left(\arccos \left(\sqrt{1-\frac{s^{2}}{a^{2}}}\right) \frac{s}{n a}\right.
$$

Using $\arcsin x=\arccos \sqrt{1-x^{2}}$ and $\sin (a-b)=\sin a \cos b-\cos a \sin b$. Now we have

$$
\left.\sin \frac{\Theta}{2}=\frac{s}{n a^{2}}\left(\sqrt{n^{2} a^{2}-s^{2}}\right)-\sqrt{a^{2}-s^{2}}\right)
$$

Doing the same thing for $\cos \frac{\Theta}{2}$ yields

$$
\cos \frac{\Theta}{2}=\frac{1}{n a^{2}}\left(\sqrt{a^{2}-s^{2}} \sqrt{n^{2} a^{2}-s^{2}}+s^{2}\right)
$$

Using $\cos (a-b)=\cos a \cos b+\sin a \sin b$. Still solving for s^{2} in terms of \cos and sin's we proceed

$$
\sin ^{2} \frac{\Theta}{2}=\frac{s^{2}}{n^{2} a^{4}}\left(n^{2} a^{2}-s^{2}-2 \sqrt{n^{2} a^{2}-s^{2}} \sqrt{a^{2}-s^{2}}+a^{2}-s^{2}\right)
$$

This is

$$
\sin ^{2} \frac{s^{2}}{n^{2} a^{2}}\left(n^{2}+1\right)-\frac{2 s^{4}}{n^{2} a^{4}}-\frac{2 s^{2}}{n^{2} a^{4}} \sqrt{n^{2} a^{2}-s^{2}} \sqrt{a^{2}-s^{2}}
$$

Note that

$$
\sqrt{n^{2} a^{2}-s^{2}} \sqrt{a^{2}-s^{2}}=n a^{2} \cos \frac{\Theta}{2}-s^{2}
$$

So we have

$$
\sin ^{2} \frac{\Theta}{2}=\frac{s^{2}}{n^{2} a^{2}}\left(n^{2}+1-\frac{2 s^{2}}{a^{2}}-2 n \cos \frac{\Theta}{2}+\frac{2 s^{2}}{a^{2}}\right)=\frac{s^{2}}{n^{2} a^{2}}\left(1+n^{2}-2 n \cos \frac{\Theta}{2}\right)
$$

Solving for s^{2}

$$
s^{2}=\frac{n^{2} a^{2} \sin ^{2} \frac{\Theta}{2}}{1+n^{2}-2 n \cos \frac{\Theta}{2}}
$$

Glad that that mess is over with, we can now do some calculus. I'm going to let q^{2} equal the denominator squared. Also to save space, lets say $\frac{\Theta}{2}=Q$. I like using the letter q.

$$
\begin{gathered}
\frac{d s^{2}}{d \Theta}=\frac{a^{2} \sin Q n^{2}}{q^{2}}\left[\cos Q\left(1-2 n \cos Q+n^{2}\right)-n \sin ^{2} Q\right] \\
\frac{d s^{2}}{d \Theta}=\frac{n^{2} a^{2}}{q^{2}} \sin Q\left[\cos Q-2 n \cos ^{2} Q+n^{2} \cos Q-n\left(1-\cos ^{2} Q\right)\right]
\end{gathered}
$$

Expand and collect

$$
\frac{d s^{2}}{d \Theta}=\frac{n^{2} a^{2}}{q^{2}} \sin Q\left[-n \cos ^{2} Q+\cos Q+n^{2} \cos Q-n\right]
$$

Group it up

$$
\frac{d s^{2}}{d \Theta}=\frac{n^{2} a^{2}}{q^{2}} \sin Q(n \cos Q-1)(n-\cos Q)
$$

Plug back in for Q and q^{2} :

$$
\frac{d s^{2}}{d \Theta}=\frac{n^{2} a^{2} \sin \frac{\Theta}{2}\left(n \cos \frac{\Theta}{2}-1\right)\left(n-\cos \frac{\Theta}{2}\right)}{\left(1-2 n \cos \frac{\Theta}{2}+n^{2}\right)^{2}}
$$

Using our plan from above,

$$
\sigma=\frac{1}{4 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2}} \frac{d s^{2}}{d \Theta}=\frac{1}{4 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2}} \frac{n^{2} a^{2} \sin \frac{\Theta}{2}\left(n \cos \frac{\Theta}{2}-1\right)\left(n-\cos \frac{\Theta}{2}\right)}{\left(1-2 n \cos \frac{\Theta}{2}+n^{2}\right)^{2}}
$$

We obtain

$$
\sigma(\Theta)=\frac{1}{4 \cos \frac{\Theta}{2}} \frac{n^{2} a^{2}\left(n \cos \frac{\Theta}{2}-1\right)\left(n-\cos \frac{\Theta}{2}\right)}{\left(1-2 n \cos \frac{\Theta}{2}+n^{2}\right)^{2}}
$$

The total cross section involves an algebraic intensive integral. The total cross section is given by

$$
\sigma_{T}=2 \pi \int_{0}^{\Theta_{\max }} \sigma(\Theta) \sin \Theta d \Theta
$$

To find $\Theta_{\max }$ we look for when the cross section becomes zero. When ($n \cos \frac{\Theta}{2}-1$) is zero, we'll have $\Theta_{\max }$. If $s>a$, its as if the incoming particle misses the 'sphere'. At $s=a$ we have maximum Θ. So using $\Theta_{\max }=2 \arccos \frac{1}{n}$, we will find it easier to plug in $x=\cos \frac{\Theta}{2}$ as a substitution, to simplify our integral.

$$
\sigma_{T}=\pi \int_{\frac{1}{n}}^{1} a^{2} n^{2} \frac{(n x-1)(n-x)}{\left(1-2 n x+n^{2}\right)^{2}} 2 d x
$$

where

$$
d x=-\frac{1}{2} \sin \frac{\Theta}{2} d \Theta \quad \cos \frac{\Theta_{\max }}{2}=\frac{1}{n}
$$

The half angle formula, $\sin \Theta=2 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2}$ was used on the $\sin \Theta$, the negative sign switched the direction of integration, and the factor of 2 had to be thrown in to make the $d x$ substitution.

This integral is still hard to manage, so make another substitution, this time, let q equal the term in the denominator.

$$
q=1-2 n x+n^{2} \quad \rightarrow \quad d q=-2 n d x
$$

The algebra must be done carefully here. Making a partial substitution to see where to go:

$$
\begin{gathered}
q_{\min }=1-2+n^{2}=n^{2}-1 \quad q_{\max }=n^{2}-2 n+1=(n-1)^{2} \\
\sigma_{T}=\int_{n^{2}-1}^{(n-1)^{2}} \frac{2 \pi a^{2} n^{2}(n x-1)(n-x)}{q^{2}} \frac{d q}{-2 n}=\pi a^{2} \int_{n^{2}-1}^{(n-1)^{2}} \frac{-n(n x-1)(n-x)}{q^{2}} d q
\end{gathered}
$$

Expanding q^{2} to see what it gives so we can put the numerator in the above integral in terms of q^{2} we see

$$
q^{2}=n^{4}+1+2 n^{2}-4 n^{3} x-4 n x+4 n^{2} x^{2}
$$

Expanding the numerator

$$
-n(n x-1)(n-x)=-n^{3} x-n x+n^{2} x^{2}+n^{2}
$$

If we take q^{2} and subtract a n^{4}, subtract a 1 , add a $2 n^{2}$ and divide the whole thing by 4 we'll get the above numerator. That is:

$$
\frac{q^{2}-n^{4}+2 n^{2}-1}{4}=\frac{q^{2}-\left(n^{2}-1\right)^{2}}{4}=-n(n x-1)(n-x)
$$

Now, our integral is

$$
\sigma_{T}=\pi a^{2} \int_{n^{2}-1}^{(n-1)^{2}} \frac{q^{2}-\left(n^{2}-1\right)^{2}}{4 q^{2}} d q
$$

This is finally an integral that can be done by hand

$$
\sigma_{T}=\frac{\pi a^{2}}{4} \int 1-\frac{\left(n^{2}-1\right)^{2}}{q^{2}} d q=\frac{\pi a^{2}}{4}\left(z+\left.\frac{\left(n^{2}-1\right)^{2}}{z}\right|_{n^{2}-1} ^{(n-1)^{2}}\right)
$$

After working out the few steps of algebra,

$$
\frac{\pi a^{2}}{4} \frac{4 n^{2}-8 n+4}{n^{2}-2 n+1}=\pi a^{2}
$$

The total cross section is

$$
\sigma_{T}=\pi a^{2}
$$

