
Homework 5: # 3.31, 3.32, 3.7a

Michael Good

Sept 27, 2004

3.7a Show that the angle of recoil of the target particle relative to the incident
direction of the scattered particle is simply Φ = 1

2 (π −Θ).

Answer:

It helps to draw a figure for this problem. I don’t yet know how to do this
in LATEX, but I do know that in the center of mass frame both the particles
momentum are equal.

m1v
′
1 = m2v

′
2

Where the prime indicates the CM frame. If you take equation (3.2) Gold-
stein, then its easy to understand the equation after (3.110) for the relationship
of the relative speed v after the collision to the speed in the CM system.

v′1 =
µ

m1
v =

m2

m1 + m2
v

Here, v is the relative speed after the collision, but as Goldstein mentions
because elastic collisions conserve kinetic energy, (I’m assuming this collision
is elastic even though it wasn’t explicitly stated), we have v = v0, that is the
relative speed after collision is equal to the initial velocity of the first particle
in the laboratory frame ( the target particle being stationary).

v′1 =
m2

m1 + m2
v0

This equation works the same way for v′2

v′2 =
m1

m1 + m2
v0

From conservation of momentum, we know that the total momentum in the
CM frame is equal to the incident(and thus total) momentum in the laboratory
frame.

(m1 + m2)vcm = m1v0

We see
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vcm =
m1

m1 + m2
v0

This is the same as v′2

v′2 = vcm

If we draw both frames in the same diagram, we can see an isosceles triangle
where the two equal sides are v′2 and vcm.

Φ + Φ + Θ = π

Φ =
1
2
(π −Θ)

3.31 Examine the scattering produced by a repulsive central force f + kr−3.
Show that the differential cross section is given by

σ(Θ)dΘ =
k

2E

(1− x)dx

x2(2−−x)2 sinπx

where x is the ratio of Θ/π and E is the energy.

Answer:

The differential cross section is given by Goldstein (3.93):

σ(Θ) =
s

sinΘ

∣∣∣∣ ds

dΘ

∣∣∣∣
We must solve for s, and ds/dΘ. Lets solve for Θ(s) first, take its derivative

with respect to s, and invert it to find ds/dΘ. We can solve for Θ(s) by using
Goldstein (3.96):

Θ(s) = π − 2
∫ ∞

rm

sdr

r
√

r2(1− V (r)
E )− s2

What is V (r) for our central force of f = k/r3? It’s found from −dV/dr = f .

V (r) =
k

2r2
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Plug this in to Θ and we have

Θ(s) = π − 2
∫ ∞

rm

sdr

r
√

r2 − (s2 + k
2E )

Before taking this integral, I’d like to put it in a better form. If we look at
the energy of the incoming particle,

E =
1
2
mr2

mθ̇2 +
k

2r2
m

=
s2E

r2
m

+
k

2r2
m

where from Goldstein page 113,

θ̇2 =
2s2E

mr4
m

We can solve for s2 + k
2E , the term in Θ,

r2
m = s2 +

k

2E

Now we are in a better position to integrate,

Θ(s) = π−2
∫ ∞

rm

sdr

r
√

r2 − r2
m

= π−2s [
1

rm
cos−1 rm

r

∣∣∣∣∞
rm

] = π−2s
1

rm
(
π

2
) = π(1− s√

s2 + k
2E

)

Goldstein gave us x = Θ/π, so now we have an expression for x in terms of
s, lets solve for s

x =
Θ
π

= 1− s√
s2 + k

2E

s2 = (s2 +
k

2E
)(1− x)2 → s2 =

k
2E (1− x)2

1− (1− x)2

s =

√
k

2E

(1− x)√
x(2− x)

Now that we have s we need only ds/dΘ to find the cross section. Solving
dΘ/ds and then taking the inverse,

dΘ
ds

= πs(−1
2
(s2 +

k

2E
)−

3
2 )2s +

π√
s2 + k

2E

dΘ
ds

=
−πs2 + π(s2 + k

2E )

(s2 + k
2E )

3
2

=
πk
2E

(s2 + k
2E )

3
2

So
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ds

dΘ
=

2E(s2 + k
2E )

3
2

πk

Putting everything in terms of x,

s2 +
k

2E
=

k

2E

(1− x)2

x(2− x)
+

k

2E
=

k

2E

1
x(2− x)

So now,

σ(Θ) =
s

sinΘ

∣∣∣∣ ds

dΘ

∣∣∣∣ =

√
k

2E
(1−x)√
x(2−x)

sinπx

2E(s2 + k
2E )

3
2

πk
=

√
k

2E
(1−x)√
x(2−x)

sinπx

2E( k
2E

1
x(2−x) )

3
2

πk
=

And this most beautiful expression becomes..

σ(Θ) =
1

sinπx

1
π

(
k

2E
)

1
2 (

2E

k
)(

k

2E
)

3
2

1− x√
x(2− x)

1
(x(2− x))

3
2

After a bit more algebra...

σ(Θ) =
k

2E

1
π

1
sinπx

1− x

(x(2− x))2

And since we know dΘ = πdx,

σ(Θ)dΘ =
k

2E

(1− x)dx

x2(2− x)2 sinπx

3.32 A central force potential frequently encountered in nuclear physics is the
rectangular well, defined by the potential

V = 0 r > a

V = −V0 r ≤ a

Show that the scattering produced by such a potential in classical mechanics is
identical with the refraction of light rays by a sphere of radius a and relative
index of refraction

n =

√
E + V0

E

This equivalence demonstrates why it was possible to explain refraction phe-
nomena both by Huygen’s waves and by Newton’s mechanical corpuscles. Show
also that the differential cross section is

σ(Θ) =
n2a2

4 cos Θ
2

(n cos Θ
2 − 1)(n− cos Θ

2 )
(1 + n2 − 2n cos Θ

2 )2

What is the total cross section?

4



Answer:

Ignoring the first part of the problem, and just solving for the differential
cross section,

σ(Θ) =
sds

sinΘdΘ
If the scattering is the same as light refracted from a sphere, then putting

our total angle scattered, Θ, in terms of the angle of incidence and transmission,

Θ = 2(θ1 − θ2)

This is because the light is refracted from its horizontal direction twice, after
hitting the sphere and leaving the sphere. Where θ1 − θ2 is the angle south of
east for one refraction.

We know sin θ1 = s/a and using Snell’s law, we know

n =
sin θ1

sin θ2
→ sin θ2 =

s

na

Expressing Θ in terms of just s and a we have

Θ = 2(arcsin
s

a
− arcsin

s

na
)

Now the plan is, to solve for s2 and then ds2/dΘ and solve for the cross
section via

σ =
sds

sinΘdΘ
=

1
2 sinΘ

ds2

dΘ
=

1
4 sin Θ

2 cos Θ
2

ds2

dΘ

Here goes. Solve for sin Θ
2 and cos Θ

2 in terms of s

sin
Θ
2

= sin(arcsin
s

a
−arcsin

s

na
) = sin arcsin

s

a
cos arcsin

s

na
−cos arcsin

s

a
sin arcsin

s

na

This is

=
s

a
cos(arccos

√
1− s2

n2a2
)− cos(arccos(

√
1− s2

a2
)

s

na

Using arcsinx = arccos
√

1− x2 and sin(a−b) = sin a cos b−cos a sin b. Now
we have

sin
Θ
2

=
s

na2
(
√

n2a2 − s2)−
√

a2 − s2)

Doing the same thing for cos Θ
2 yields
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cos
Θ
2

=
1

na2
(
√

a2 − s2
√

n2a2 − s2 + s2)

Using cos(a− b) = cos a cos b + sin a sin b. Still solving for s2 in terms of cos
and sin’s we proceed

sin2 Θ
2

=
s2

n2a4
(n2a2 − s2 − 2

√
n2a2 − s2

√
a2 − s2 + a2 − s2)

This is

sin2 s2

n2a2
(n2 + 1)− 2s4

n2a4
− 2s2

n2a4

√
n2a2 − s2

√
a2 − s2

Note that √
n2a2 − s2

√
a2 − s2 = na2 cos

Θ
2
− s2

So we have

sin2 Θ
2

=
s2

n2a2
(n2 + 1− 2s2

a2
− 2n cos

Θ
2

+
2s2

a2
) =

s2

n2a2
(1 + n2 − 2n cos

Θ
2

)

Solving for s2

s2 =
n2a2 sin2 Θ

2

1 + n2 − 2n cos Θ
2

Glad that that mess is over with, we can now do some calculus. I’m going
to let q2 equal the denominator squared. Also to save space, lets say Θ

2 = Q. I
like using the letter q.

ds2

dΘ
=

a2 sinQn2

q2
[cos Q(1− 2n cos Q + n2)− n sin2 Q]

ds2

dΘ
=

n2a2

q2
sinQ[cos Q− 2n cos2 Q + n2 cos Q− n(1− cos2 Q)]

Expand and collect

ds2

dΘ
=

n2a2

q2
sinQ[−n cos2 Q + cos Q + n2 cos Q− n]

Group it up

ds2

dΘ
=

n2a2

q2
sinQ(n cos Q− 1)(n− cos Q)

Plug back in for Q and q2:
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ds2

dΘ
=

n2a2 sin Θ
2 (n cos Θ

2 − 1)(n− cos Θ
2 )

(1− 2n cos Θ
2 + n2)2

Using our plan from above,

σ =
1

4 sin Θ
2 cos Θ

2

ds2

dΘ
=

1
4 sin Θ

2 cos Θ
2

n2a2 sin Θ
2 (n cos Θ

2 − 1)(n− cos Θ
2 )

(1− 2n cos Θ
2 + n2)2

We obtain

σ(Θ) =
1

4 cos Θ
2

n2a2(n cos Θ
2 − 1)(n− cos Θ

2 )
(1− 2n cos Θ

2 + n2)2

The total cross section involves an algebraic intensive integral. The total
cross section is given by

σT = 2π

∫ Θmax

0

σ(Θ) sin ΘdΘ

To find Θmax we look for when the cross section becomes zero. When
(n cos Θ

2 − 1) is zero, we’ll have Θmax. If s > a, its as if the incoming particle
misses the ‘sphere’. At s = a we have maximum Θ. So using Θmax = 2 arccos 1

n ,
we will find it easier to plug in x = cos Θ

2 as a substitution, to simplify our in-
tegral.

σT = π

∫ 1

1
n

a2n2 (nx− 1)(n− x)
(1− 2nx + n2)2

2dx

where
dx = −1

2
sin

Θ
2

dΘ cos
Θmax

2
=

1
n

The half angle formula, sin Θ = 2 sin Θ
2 cos Θ

2 was used on the sinΘ, the
negative sign switched the direction of integration, and the factor of 2 had to
be thrown in to make the dx substitution.

This integral is still hard to manage, so make another substitution, this time,
let q equal the term in the denominator.

q = 1− 2nx + n2 → dq = −2ndx

The algebra must be done carefully here. Making a partial substitution to
see where to go:

qmin = 1− 2 + n2 = n2 − 1 qmax = n2 − 2n + 1 = (n− 1)2

σT =
∫ (n−1)2

n2−1

2πa2n2(nx− 1)(n− x)
q2

dq

−2n
= πa2

∫ (n−1)2

n2−1

−n(nx− 1)(n− x)
q2

dq
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Expanding q2 to see what it gives so we can put the numerator in the above
integral in terms of q2 we see

q2 = n4 + 1 + 2n2 − 4n3x− 4nx + 4n2x2

Expanding the numerator

−n(nx− 1)(n− x) = −n3x− nx + n2x2 + n2

If we take q2 and subtract a n4, subtract a 1, add a 2n2 and divide the whole
thing by 4 we’ll get the above numerator. That is:

q2 − n4 + 2n2 − 1
4

=
q2 − (n2 − 1)2

4
= −n(nx− 1)(n− x)

Now, our integral is

σT = πa2

∫ (n−1)2

n2−1

q2 − (n2 − 1)2

4q2
dq

This is finally an integral that can be done by hand

σT =
πa2

4

∫
1− (n2 − 1)2

q2
dq =

πa2

4
(z +

(n2 − 1)2

z

∣∣∣∣(n−1)2

n2−1

)

After working out the few steps of algebra,

πa2

4
4n2 − 8n + 4
n2 − 2n + 1

= πa2

The total cross section is

σT = πa2
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