
Homework 8: # 5.4, 5.6, 5.7, 5.26

Michael Good

Oct 21, 2004

5.4
Derive Euler’s equations of motion, Eq. (5.39’), from the Lagrange equation of
motion, in the form of Eq. (1.53), for the generalized coordinate ψ.

Answer:

Euler’s equations of motion for a rigid body are:

I1ω̇1 − ω2ω3(I2 − I3) = N1

I2ω̇2 − ω3ω1(I3 − I1) = N2

I3ω̇3 − ω1ω2(I1 − I2) = N3

The Lagrangian equation of motion is in the form

d

dt
(
∂T

∂q̇j
)− ∂T

∂qj
= Qj

The kinetic energy for rotational motion is

T =
3∑
i

1
2
Iiω

2
i

The components of the angular velocity in terms of Euler angles for the body
set of axes are

ω1 = φ̇ sin θ sinψ + θ̇ cosψ

ω2 = φ̇ sin θ cosψ − θ̇ sinψ

ω3 = φ̇ cos θ + ψ̇

Solving for the equation of motion using the generalized coordinate ψ:

d

dt
(
∂T

∂ψ̇
)− ∂T

∂ψ
= Nψ

3∑
i

Iiωi
∂ωi
∂ψ

− d

dt

3∑
i

Iiωi
∂ωi

∂ψ̇
= Nψ
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Now is a good time to pause and calculate the partials of the angular veloc-
ities,

∂ω1

∂ψ
= −θ̇ sinψ + φ̇ sin θ cosψ

∂ω2

∂ψ
= −θ̇ cosψ − φ̇ sin θ sinψ

∂ω3

∂ψ
= 0

and

∂ω1

∂ψ̇
=
∂ω2

∂ψ̇
= 0

∂ω3

∂ψ̇
= 1

Now we have all the pieces of the puzzle, explicitly

3∑
i

Iiωi
∂ωi
∂ψ

− d

dt

3∑
i

Iiωi
∂ωi

∂ψ̇
= Nψ

I1ω1(−θ̇ sinψ + φ̇ sin θ cosψ) + I2ω2(−θ̇ cosψ − φ̇ sin θ sinψ)− d

dt
I3ω3 = Nψ

This is, pulling out the negative sign on the second term,

I1ω1(ω2)− I2ω2(ω1)− I3ω̇3 = Nψ

I3ω̇3 − ω1ω2(I1 − I2) = Nψ

And through cyclic permutations

I2ω̇2 − ω3ω1(I3 − I1) = N2

I1ω̇1 − ω2ω3(I2 − I3) = N1

we have the rest of Euler’s equations of motion for a rigid body.
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5.6

• Show that the angular momentum of the torque-free symmetrical top ro-
tates in the body coordinates about the symmetry axis with an angular
frequency ω. Show also that the symmetry axis rotates in space about the
fixed direction of the angular momentum with angular frequency

φ̇ =
I3ω3

I1 cos θ

where φ is the Euler angle of the line of nodes with respect to the angular
momentum as the space z axis.

• Using the results of Exercise 15, Chapter 4, show that ω rotates in space
about the angular momentum with the same frequency φ̇, but that the
angle θ′ between ω and L is given by

sin θ′ =
Ω
φ̇

sin θ′′

where θ′′ is the inclination of ω to the symmetry axis. Using the data
given in Section 5.6, show therefore that Earth’s rotation axis and axis of
angular momentum are never more than 1.5 cm apart on Earth’s surface.

• Show from parts (a) and (b) that the motion of the force-free symmetrical
top can be described in terms of the rotation of a cone fixed in the body
whose axis is the symmetry axis, rolling on a fixed cone in space whose
axis is along the angular momentum. The angular velocity vector is along
the line of contact of the two cones. Show that the same description
follows immediately from the Poinsot construction in terms of the inertia
ellipsoid.

Answer:

Marion shows that the angular momentum of the torque-free symmetrical
top rotates in the body coordinates about the symmetry axis with an angular
frequency ω more explicitly than Goldstein. Beginning with Euler’s equation
for force-free, symmetric, rigid body motion, we see that ω3 = constant. The
other Euler equations are

ω̇1 = −(
I3 − I

I
ω3)ω2

ω̇2 = −(
I3 − I

I
ω3)ω1

Solving these, and by already making the substitution, because we are deal-
ing with constants,
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Ω =
I3 − I

I
ω3

we get

(ω̇1 + iω̇2)− iΩ(ω1 + iω2) = 0

Let
q = ω1 + iω2

Now
q̇ − iΩq = 0

has solution

q(t) = AeiΩt

this is

ω1 + iω2 = A cos Ωt+ iA sinΩt

and we see
ω1(t) = A cos Ωt

ω2(t) = A sinΩt

The x3 axis is the symmetry axis of the body, so the angular velocity vector
precesses about the body x3 axis with a constant angular frequency

Ω =
I3 − I

I
ω3

.

φ̇ =
I3ω3

I1 cos θ

To prove

φ̇ =
I3ω3

I1 cos θ

We may look at the two cone figure angular momentum components, where
L is directed along the vertical space axis and θ is the angle between the space
and body vertical axis.

L1 = 0

L2 = L sin θ

L3 = L cos θ

If α is the angle between ω and the vertical body axis, then
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ω1 = 0

ω2 = ω sinα

ω3 = ω cosα

The angular momentum components in terms of α may be found

L1 = I1ω1 = 0

L2 = I1ω2 = I1ω sinα

L3 = I3ω3 = I3ω cosα

Using the Euler angles in the body frame, we may find, (using the instant
in time where x2 is in the plane of x3, ω, and L, where ψ = 0) ,

ω2 = φ̇ sin θ cosψ − θ̇ sinψ

ω2 = φ̇ sin θ

This is

φ̇ =
ω2

sin θ
=
ω sinα
sin θ

= ω(
L2

I1ω
)
L

L2
=
L

I1

Plugging in L3

φ̇ =
L

I1
=

L3

I1 cos θ
=

I3ω3

I1 cos θ

A simple way to show

sin θ′ =
Ω
φ̇

sin θ′′

may be constructed by using the cross product of ω × L and ω × x3.

|ω × L| = ωL sin θ′ = L
√
ω2
x + ω2

y

Using the angular velocity components in terms of Euler angles in the space
fixed frame, this is equal to

ωL sin θ′ = Lφ̇ sin θ

with θ fixed, and θ̇ = 0. For ω × x3 we have

|ω × x3| = ω sin θ′′ =
√
ω2
x′ + ω2

y′

Using the angular velocity components in terms of Euler angles in the body
fixed frame, this is equal to
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ω sin θ′′ = φ̇ sin θ

Using these two expressions, we may find their ratio

ωL sin θ′

ω sin θ′′
=
Lφ̇ sin θ
φ̇ sin θ

sin θ′

sin θ′′
=
ψ̇

φ̇

Because ψ̇ = Ω

sin θ′ =
Ω
φ̇

sin θ′′

To show that the Earth’s rotation axis and axis of angular momentum are
never more than 1.5cm apart on the Earth’s surface, the following approxima-
tions may be made, sin θ′ ≈ θ′, cos θ ≈ 1, sin θ′′ ≈ θ′′, and I1/I3 ≈ 1. Earth
is considered an oblate spheroid, I3 > I1 and the data says there is 10m for
amplitude of separation of pole from rotation axis. Using

sin θ′ =
Ω
φ̇

sin θ′′

φ̇ =
I3ω3

I1 cos θ

Ω =
I3 − I1
I1

ω3

we have

sin θ′ =
I3 − I1
I1

ω3
I1 cos θ
I3ω3

sin θ′′

Applying the approximations

θ′ =
I3 − I1
I1

θ′′

θ′ =
d

R
=
I3 − I1
I1

s

R

whereR is the radius of the Earth, and s is the average distance of separation,
which we will assume is half the amplitude, 5m.

d =
I3 − I1
I1

s = (.00327)(5) = 1.6 cm

Force free motion means the angular momentum vector L is constant in time
and stationary, as well as the rotational kinetic energy. (because the center of
mass of the body is fixed). So because T = 1

2ω · L is constant, ω precesses
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around with a constant angle. This tracing is called the space cone, only if L is
lined up with x3 space axis. Proving that L, x3 and ω all lie in the same plane
will show that this space cone is traced out by ω. This results from I1 = I2 as
shown below:

L · (ω × e3) = 0

because

ω × e3 = ω2e1 − ω1e2

L · (ω × e3) = I1ω1ω2 − I2ω1ω2 = 0

Because I1 = I2.
Now the symmetry axis of the body has the angular velocity ω precessing

around it with a constant angular frequency Ω. Thus another cone is traced
out, the body cone. So we have two cones, hugging each other with ω in the
direction of the line of contact.

5.7
For the general asymmetrical rigid body, verify analytically the stability theo-
rem shown geometrically above on p. 204 by examining the solution of Euler’s
equations for small deviations from rotation about each of the principal axes.
The direction of ω is assumed to differ so slightly from a principal axis that the
component of ω along the axis can be taken as constant, while the product of
components perpendicular to the axis can be neglected. Discuss the bounded-
ness of the resultant motion for each of the three principal axes.

Answer:

Marion and Thornton give a clear analysis of the stability of a general rigid
body. First lets define our object to have distinct principal moments of inertia.
I1 < I2 < I3. Lets examine the x1 axis first. We have ω = ω1e1 if we spin it
around the x1 axis. Apply some small perturbation and we get

ω = ω1e1 + ke2 + pe3

In the problem, we are told to neglect the product of components perpen-
dicular to the axis of rotation. This is because k and p are so small. The Euler
equations

I1ω̇1 − ω2ω3(I2 − I3) = 0

I2ω̇2 − ω3ω1(I3 − I1) = 0

I3ω̇3 − ω1ω2(I1 − I2) = 0

become
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I1ω̇1 − kp(I2 − I3) = 0

I2k̇ − pω1(I3 − I1) = 0

I3ṗ− ω1k(I1 − I2) = 0

Neglecting the product pk ≈ 0, we see ω1 is constant from the first equation.
Solving the other two yields

k̇ = (
I3 − I1
I2

ω1)p

ṗ = (
I1 − I2
I3

ω1)k

To solve we may differentiate the first equation, and plug into the second:

k̈ = (
I3 − I1
I2

ω1)ṗ → k̈ + (
(I1 − I3)(I1 − I2)

I2I3
ω2

1)k = 0

Solve for k(t):

k(t) = AeiΩ1kt +Be−iΩ1kt

with

Ω1k = ω1

√
(I1 − I3)(I1 − I2)

I2I3

Do this for p(t) and you get

Ω1k = Ω1p ≡ Ω1

Cyclic permutation for the other axes yields

Ω1 = ω1

√
(I1 − I3)(I1 − I2)

I2I3

Ω2 = ω2

√
(I2 − I1)(I2 − I3)

I3I1

Ω3 = ω3

√
(I3 − I2)(I3 − I1)

I1I2

Note that the only unstable motion is about the x2 axis, because I2 < I3 and
we obtain a negative sign under the square root, Ω2 is imaginary and the per-
turbation increases forever with time. Around the x2 axis we have unbounded
motion. Thus we conclude that only the largest and smallest moment of inertia
rotations are stable, and the intermediate principal axis of rotation is unstable.
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5.26
For the axially symmetric body precessing uniformly in the absence of torques,
find the analytical solutions for the Euler angles as a function of time.

Answer:

For an axially symmetric body, symmetry axis Lz, we have I1 = I2, and
Euler’s equations are

I1ω̇1 = (I1 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω1ω3

I3ω̇3 = 0

This is equation (5.47) of Goldstein, only without the typos. Following
Goldstein,

ω1 = A cos Ωt

ω2 = A sinΩt

where

Ω =
I3 − I1
I1

ω3

Using the Euler angles in the body fixed frame,

ω1 = φ̇ sin θ sinψ + θ̇ cosψ

ω2 = φ̇ sin θ cosψ − θ̇ sinψ

ω3 = φ̇ cos θ + ψ̇

we have

ω1 = φ̇ sin θ sinψ + θ̇ cosψ = A sin(Ωt+ δ) (1)

ω2 = φ̇ sin θ cosψ − θ̇ sinψ = A cos(Ωt+ δ) (2)

ω3 = φ̇ cos θ + ψ̇ = constant (3)

Multiplying the left hand side of (1) by cosψ and the left hand side of (2)
by sinψ, and subtracting them yields

[φ̇ sin θ sinψ cosψ + θ̇ cos2 ψ]− [φ̇ sin θ cosψ sinψ − θ̇ sin2 ψ] = θ̇
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Thus we have

θ̇ = A sin(Ωt+ δ) cosψ +A cos(Ωt+ δ) sinψ

θ̇ = A sin(Ωt+ δ + ψ)

I assume uniform precession means θ̇ = 0, no nutation or bobbing up and
down. Thus

Ωt+ δ + ψ = nπ

with n = 0,±1,±2..., if n = 0

ψ = −Ωt+ ψ0

where ψ0 is the initial angle from the x− axis. From this, ψ̇ = −Ω.

If we multiply the left hand side of (1) by sinψ and the left hand side of (2)
by cosψ, and add them:

[φ̇ sin θ sin2 ψ + θ̇ cosψ sinψ] + [φ̇ sin θ cos2 ψ − θ̇ sinψ cosψ] = φ̇ sin θ

Thus we have

φ̇ sin θ = A sin(Ωt+ δ) sinψ +A cos(Ωt+ δ) cosψ

φ̇ sin θ = A cos(Ωt+ δ + ψ)

Plugging this result into (3)

ω3 = A
cos θ
sin θ

cos(Ωt+ ψ + δ) + ψ̇

Using ψ̇ = −Ω and Ωt+ δ + ψ = 0,

ω3 = A
cos θ
sin θ

cos(0)− Ω

A = (ω3 + Ω) tan θ

and since Ω = I3−I1
I1

ω3

A = (ω3 +
I3 − I1
I1

ω3) tan θ =
I3
I1
ω3 tan θ

With this we can solve for the last Euler angle, φ,

φ̇ = A
cos(Ωt+ ψ + δ)

sin θ
=
I3
I1
ω3 tan θ

cos(0)
sin θ
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φ̇ =
I3ω3

I1 cos θ

φ =
I3ω3

I1 cos θ
t+ φ0

So all together

θ = θ0

ψ(t) = −Ωt+ ψ0

φ(t) =
I3ω3

I1 cos θ
t+ φ0
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