
Homework 11: # 10.7 b, 10.17, 10.26

Michael Good

Nov 2, 2004

10.7

• A single particle moves in space under a conservative potential. Set up
the Hamilton-Jacobi equation in ellipsoidal coordinates u, v, φ defined in
terms of the usual cylindrical coordinates r, z, φ by the equations.

r = a sinh v sinu z = a cosh v cosu

For what forms of V (u, v, φ) is the equation separable.

• Use the results above to reduce to quadratures the problem of point parti-
cle of mass m moving in the gravitational field of two unequal mass points
fixed on the z axis a distance 2a apart.

Answer:

Let’s obtain the Hamilton Jacobi equation. This will be used to reduce the
problem to quadratures. This is an old usage of the word quadratures, and
means to just get the problem into a form where the only thing left to do is take
an integral.

Here

T =
1
2
mṙ2 +

1
2
mż2 +

1
2
mr2φ̇2

r = a sinh v sinu

ṙ = a cosh v sinuv̇ + a sinh v cosuu̇

z = a cosh v cosu

ż = a sinh v cosuv̇ − a cosh v sinuu̇

Here

ṙ2+ż2 = a2(cosh2 v sin2 u+sinh2 v cos2 u)(v̇2+u̇2) = a2(sin2 u+sinh2 v)(v̇2+u̇2)
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To express in terms of momenta use

pv =
∂L

∂v̇
= ma2(sin2 u+ sinh2 v)v̇

pu =
∂L

∂u̇
= ma2(sin2 u+ sinh2 v)u̇

because the potential does not depend on v̇ or u̇. The cyclic coordinate φ
yields a constant I’ll call αφ

pφ = mr2φ̇ = αφ

So our Hamiltonian is

H =
p2
v + p2

u

2ma2(sin2 u+ sinh2 v)
+

p2
φ

2ma2 sinh2 v sin2 u
+ V

To find our Hamilton Jacobi expression, the principle function applies

S = Wu +Wv + αφφ− Et

So our Hamilton Jacobi equation is

1
2ma2(sin2 u+ sinh2 v)

[(
∂Wu

∂u
)2+(

∂Wv

∂v
)2]+

1
2ma2 sinh2 v sin2 u

(
∂Wφ

∂φ
)2+V (u, v, φ) = E

This is

1
2ma2

[(
∂Wu

∂u
)2+(

∂Wv

∂v
)2]+

1
2ma2

(
1

sinh2 v
+

1
sin2 u

)α2
φ+(sin2 u+sinh2 v)V (u, v, φ) = (sin2 u+sinh2 v)E

A little bit more work is necessary. Once we solve for V (u, v, φ) we can then
separate this equation into u, v and φ parts, at which point we will have only
integrals to take.

I suggest drawing a picture, with two point masses on the z axis, with the
origin being between them, so they are each a distance a from the origin. The
potential is then formed from two pieces

V = −GmM1

|~r − aẑ|
− GmM2

|~r + aẑ|
To solve for the denominators use the Pythagorean theorem, remembering

we are in cylindrical coordinates,

|~r ∓ aẑ|2 = (z ∓ a)2 + r2

Using the results from part (a) for r and z,

|~r ∓ aẑ|2 = a2(cosh v cosu∓ 1)2 + a2 sinh2 v sin2 u
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|~r ∓ aẑ|2 = a2(cosh2 v cos2 u∓ 2 cosh v cosu+ 1 + sinh2 v sin2 u)

Lets rearrange this to make it easy to see the next step,

|~r ∓ aẑ|2 = a2(sinh2 v sin2 u+ cosh2 v cos2 u+ 1∓ 2 cosh v cosu)

Now convert the sin2 u = 1− cos2 u and convert the cosh2 v = 1 + sinh2 v

|~r ∓ aẑ|2 = a2(sinh2 v + cos2 u+ 1∓ 2 cosh v cosu)

Add the 1 and cosh2 v

|~r ∓ aẑ|2 = a2(cosh2 v + cos2 u∓ 2 cosh v cosu)

|~r ∓ aẑ|2 = (a(cosh v ∓ cosu))2

So our potential is now

V = − GmM1

a(cosh v − cosu)
− GmM2

a(cosh v + cosu)

V = −1
a

GmM1(cosh v + cosu) +GmM2(cosh v − cosu)
cosh2 v − cos2 u

Note the very helpful substitution

cosh2 v − cos2 u = sin2 u+ sinh2 v

Allowing us to write V

V = −1
a

GmM1(cosh v + cosu) +GmM2(cosh v − cosu)
sin2 u+ sinh2 v

Plug this into our Hamilton Jacobi equation, and go ahead and separate out
u and v terms, introducing another constant, A:

1
2ma2

(
∂Wu

∂u
)2 +

1
2ma2

α2
φ

sin2 u
− 1
a
Gm(M1 −M2) cosu− E sin2 u = A

1
2ma2

(
∂Wv

∂v
)2 +

1
2ma2

α2
φ

sinh2 v
− 1
a
Gm(M1 −M2) cosh v − E sinh2 v = −A

The problem has been reduced to quadratures.

3



10.17
Solve the problem of the motion of a point projectile in a vertical plane, using
the Hamilton-Jacobi method. Find both the equation of the trajectory and the
dependence of the coordinates on time, assuming the projectile is fired off at
time t = 0 from the origin with the velocity v0, making an angle θ with the
horizontal.

Answer:

I’m going to assume the angle is θ because there are too many α’s in the
problem to begin with. First we find the Hamiltonian,

H =
p2
x

2m
+

p2
y

2m
+mgy

Following the examples in section 10.2, we set up the Hamiltonian-Jacobi
equation by setting p = ∂S/∂q and we get

1
2m

(
∂S

∂x
)2 +

1
2m

(
∂S

∂y
)2 +mgy +

∂S

∂t
= 0

The principle function is

S(x, αx, y, α, t) = Wx(x, αx) +Wy(y, α)− αt

Because x is not in the Hamiltonian, it is cyclic, and a cyclic coordinate has
the characteristic component Wqi = qiαi.

S(x, αx, y, α, t) = xαx +Wy(y, α)− αt

Expressed in terms of the characteristic function, we get for our Hamiltonian-
Jacobi equation

α2
x

2m
+

1
2m

(
∂Wy

∂y
)2 +mgy = α

This is

∂Wy

∂y
=

√
2mα− α2

x − 2m2gy

Integrated, we have

Wy(y, α) = − 1
3m2g

(2mα− α2
x − 2m2gy)3/2

Thus our principle function is

S(x, αx, y, α, t) = xαx +− 1
3m2g

(2mα− α2
x − 2m2gy)3/2 − αt

Solving for the coordinates,
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β =
∂S

∂α
= − 1

mg
(2mα− α2

x − 2m2gy)1/2 − t

βx =
∂S

∂αx
= x+

αx
m2g

(2mα− α2
x − 2m2gy)1/2

Solving for both x(t) and y(t) in terms of the constants β, βx, α and αx

y(t) = −g
2
(t+ β)2 +

α

mg
− α2

x

2m2g

x(t) = βx +
αx
m

(− 1
mg

(2mα− α2
x − 2m2gy)1/2)

Our x(t) is

x(t) = βx +
αx
m

(β + t)

We can solve for our constants in terms of our initial velocity, and angle θ
through initial conditions,

x(0) = 0 → βx = −αx
m
β

y(0) = 0 → −g
2
β2 +

α

mg
− α2

x

2m2g
= 0

ẋ(0) = v0 cos θ =
αx
m

ẏ(0) = v0 sin θ = −gβ

Thus we have for our constants

β =
v0 sin θ
−g

βx =
v2
0

g
cos θ sin θ

α =
mg

2g
(v2

0 sin2 θ + v2
0 cos2 θ) =

mv2
0

2

αx = mv0 cos θ

Now our y(t) is

y(t) = −g
2
(t+

v0 sin θ
g

)2 +
v2
0

g
− v2

0 cos2 θ
2g

y(t) = −g
2
t2 + v0 sin θt− g

2
v2
0 sin2 θ

g2
+
v2
0

g
− v2

0 cos2 θ
2g
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y(t) = −g
2
t2 + v0 sin θt

and for x(t)

x(t) =
v2
0

g
cos θ sin θ + v0 cos θ

v0 sin θ
−g

+ v0 cos θt

x(t) = v0 cos θt

Together we have

y(t) = −g
2
t2 + v0 sin θt

x(t) = v0 cos θt

10.26
Set up the problem of the heavy symmetrical top, with one point fixed, in the
Hamilton-Jacobi mehtod, and obtain the formal solution to the motion as given
by Eq. (5.63).

Answer:

This is the form we are looking for.

t =
∫ u(t)

u(0)

du√
(1− u2)(α− βu)− (b− au)2

Expressing the Hamiltonian in terms of momenta like we did in the previous
problem, we get

H =
p2
ψ

2I3
+

p2
θ

2I1
+

(pφ − pψ cos θ)2

2I1 sin2 θ
+Mgh cos θ

Setting up the principle function, noting the cyclic coordinates, we see

S(θ, E, ψ, αψ, φ, αφ, t) = Wθ(θ, E) + ψαψ + φαφ − Et

Using

∂S

∂q
= p

we have for our Hamilton-Jacobi equation, solved for the partial S’s

α2
ψ

2I3
+

1
2I1

(
∂Wθ

∂θ
)2 +

(αφ − αψ cos θ)2

2I1 sin2 θ
+Mgh cos θ = E

Turning this inside out:
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∂

∂θ
Wθ(θ, E) =

√
2I1E −

α2
ψI1

I3
− (αφ − αψ cos θ)2

sin2 θ
− 2I1Mgh cos θ

When integrated,

Wθ =
∫

(2I1E −
α2
ψI1

I3
− (αφ − αψ cos θ)2

sin2 θ
− 2I1Mgh cos θ)1/2dθ

Now we are in a position to solve

βθ =
∂S

∂E
=
∂Wθ

∂E
− t

∂Wθ

∂E
= βθ + t =

∫
2I1dθ

2(2I1E − α2
ψ
I1

I3
− (αφ−αψ cos θ)2

sin2 θ
− 2I1Mgh cos θ)1/2

Using the same constants Goldstein uses

α =
2E − α2

ψ

I3

I1
=

2E
I1

−
α2
ψ

I3I1

β =
2Mgl

I1
where

αφ = I1b

αψ = I1a

and making these substitutions

βθ + t =
∫

I1dθ

(I1(2E − α2
ψ

I3
)− I2

1
(b−a cos θ)2

sin2 θ
− I12Mgh cos θ)1/2

βθ + t =
∫

dθ

(α− (b−a cos θ)2

sin2 θ
− β cos θ)1/2

For time t, the value of θ is θ(t)

t =
∫ θ(t)

θ(0)

dθ

(α− (b−a cos θ)2

sin2 θ
− β cos θ)1/2

The integrand is the exact expression as Goldstein’s (5.62). Making the
substitution u = cos θ we arrive home

t =
∫ u(t)

u(0)

du√
(1− u2)(α− βu)− (b− au)2
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