
Homework 1: # 1.4, 1.5, 1.6, 1.10, 1.12, 1.13

Michael Good

Jan 14, 2005

Problem 1.4

Each of three charged spheres of radius a one conducting, one having a uniform
charge density within its volume, and one having a spherically symmetric charge
density that varies radially as rn (n > −3), has a total charge Q. Use Gauss’s
theorem to obtain the elctric fields both inside and outside each sphere. Sketch
the behavior of the fields as a function of radius for the first two spheres, and
for the third with n = −2,+2.

Solution:

For a conducting sphere, charge resides on the surface. Even in an external
electric field induced charges on the surface will produce a field of their own and
cancel off the original field. The net electric field inside a conductor is always
zero.

r < a

∮
S

E · r̂ da =
1
ε0

∫
V

ρ(r)dV ρ(r) = 0 → ~E = 0

Outside the conductor there is no cancellation of the electric field.

r > a

∮
S

E · r̂ da =
Q

ε0

because

Q =
∫

V

ρ(r)dV

we then have

E · (Area) =
Q

ε0

~E =
Q

4πε0r2
r̂
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for outside the conducting sphere, r > a. And actually, this is the case for
outside all three spheres, as outside, the total charge for all three are the same Q.

The electric field inside a sphere of uniform charge density is found by
Gauss’s law

r < a E(4πr2) =
1
ε0

∫
V

ρ(r)dV

E =
1
ε0

1
4πr2

3Q
4πa3

4
3
πr3

r < a ~E =
Qr

4πε0a3
r̂

for inside a sphere of uniform charge density.

The electric field inside a sphere having spherically symmetric charge density
varying radially as rn(n > −3) is found by

r < a E · 4πr2 =
1
ε0

∫
krndV

E · 4πr2 =
4πk
ε0

∫
rn+2dr

E =
krn+1

ε0(n+ 3)
r̂

To find k, we use

Q =
∫ a

0

ρ(r)dV

Q = 4πk
∫ a

0

rn+2dr

k =
Q(n+ 3)
4πan+3

Thus

r < a ~E =
Q

4πε0
rn+1

an+3
r̂

for inside a sphere of spherically symmetric charge density that varies radi-
ally as rn (n > −3).
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Conducting sphere sketch:

Uniform density sphere sketch:

Symmetric charge density sketch, n = −2 and n = 2:

Problem 1.5

The time-averaged potential of a neutral hydrogen atom is given by

Φ =
q

4πε
e−αr

r
(1 +

αr

2
)

where q is the magnitude of the electronic charge, and α−1 = a0/2, a0 being
the Bohr radius. Find the distribution of charge( both continuous and discrete)
that will give this potential and interpret your result physically.

Solution:

Using Poisson’s equation,

∇2Φ = − ρ

ε0
we can solve for the charge density, which is the distribution of charge. We

are given a hint to find the discrete distribution of charge, meaning likely a delta
function will be in our answer. In spherical coordinates, ∇2 is defined by

∇2 ≡ 1
r2

∂

∂r
(r2

∂

∂r
)

Also, Jackson shows on page 35, that

∇2(
1
r
) = −4πδ(~r)

Now lets solve Poisson’s equation for ρ and see if this gives us something
that might make sense for the hydrogen atom.
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∇2Φ =
q

4πε0
1
r2

∂

∂r
(r2

∂

∂r
)[
e−αr

r
+
αe−αr

2
]

Using the product rule on the first term, and setting ∇2Φ = −ρ/ε0 we
obtain,

ρ = − q

4π
1
r2

∂

∂r
(e−αrr2

∂

∂r
(
1
r
)− αre−αr − α2r2

2
e−αr)

It only gets slightly more messy from here. If we distribute the 1
r2

∂
∂r term

we get

ρ = − q

4π
[
1
r2

∂

∂r
(e−αrr2

∂

∂r
(
1
r
))− 1

r2
∂

∂r
(αre−αr)− 1

r2
∂

∂r
(
α2r2

2
e−αr)]

The product rule gives us 6 terms from this.

ρ = − q

4π
[e−αr 1

r2
∂

∂r
(r2

∂

∂r
)(

1
r
)+

α

r2
e−αr+

α2

r
e−αr− α

r2
e−αr+

α3

2
e−αr−α

2

r
e−αr]

This is, after the terms cancel,

ρ = − q

4π
[e−αr 1

r2
∂

∂r
(r2

∂

∂r
)(

1
r
) +

α3

2
e−αr]

Using our delta function equation for the first term

ρ = − q

4π
[−4πδ(~r) +

α3

2
e−αr]

ρ = qδ(~r)− q

8π
α3e−αr

Physically, this is the point charge of the proton nucleus represented by the
delta function at the center of the atom, surrounded by the negative electron
cloud.
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Problem 1.6

A simple capacitor is a device formed by two insulated conductors adjacent to
each other. If equal and opposite charges are placed on the conductors, there will
be a certain difference of potential between them. The ratio of the magnitude
of the charge on one conductor to the magnitude of the potential difference is
called the capacitance (in SI units it is measured in farads). Using Gauss’s law,
calculate the capacitance of

• two large, flat, conducting sheets of area A, separated by a small distance
d;

• two concentric conducting spheres with radii a,b (b > a);

• two concentric cnoducting cylinders of length L, large compared to their
radii a, b, (b > a).

• What is the inner diameter of the outer conductor in an air-filled coaxial
cable whose center conductor is a cylinderical wire of diameter 1mm and
whose capacitance is 3× 10−11 F/m? 3× 10−12F/m?

Solution:

For two conducting sheets, Griffiths (pg 105) does a fine job explaining what
happens. Gauss’s law is used to find the electric field.∮

~E · d~a =
Qenc

ε0∫
~E · d~a = 2A| ~E|

2A| ~E| = σA

ε0

~E =
σ

2ε0
n̂

The electric field between the plates is

E =
σ

ε0

as the fields cancel outside the plates, but contribute inside. We are looking
for capacitance,

C =
Q

V

and the potential difference is
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V =
∫ d

0

~E · d~l =
σd

ε0
=

Qd

ε0A

Thus

C =
Aε0
d

For two conducting spheres, Griffiths ex 2.11 explicitly derives the capaci-
tance. We know from Gauss’s law the electric field between the two shell’s from
the problem I just did, Jackson 1.4.

~E =
1

4πε0
Q

r2
r̂

So we only need the potential, because C = Q/V .

V = −
∫ a

b

~E · d~l = − Q

4πε0

∫ a

b

1
r2
dr =

Q

4πε0
(
1
a
− 1
b
)

Therefore

C =
Q

V
= 4πε0

ab

b− a

For two conducting cylinders, we use Gauss’s law to find the electric field∮
~E · d~a =

Q

ε0

| ~E|2πlL =
Q

ε0

~E =
Q

2πlLε0
ŝ

Finding the potential difference as before,

V = −
∫ a

b

~E · d~l = − Q

2πLε0

∫ a

b

1
l
dl =

Q

2πLε0
ln
b

a

Therefore,

C =
Q

V
=

2πLε0
ln b

a

For part (d) we just use the above formula and plug and chug into a calcu-
lator, making the appropriate unit conversions.

ε0 = 8.85× 10−12C2/Nm2

2πε0 = 3× 10−11 ln
b

.5× 10−3
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b = 3.2× 10−3

The diameter is twice this, so our first answer is

d1 = 6.4× 10−3 m

For 3× 10−12F/m we do the same

2πε0 = 3× 10−12 ln
b

.5× 10−3

and we get
d2 = 1.1× 105 m

Together for part (d) the answers are

d1 = 6.4× 10−3 m d2 = 1.1× 105 m

This is a big difference for only a magnitude difference in capacitance.
Problem 1.10

Prove the mean value theorem: For charge-free space the value of the electro-
static potential at any point is equal to the average of the potential over the
surface of any sphere centered on that point.

Solution:

What we are looking to prove mathematically is this statement:

Φ(x) =
1

4πR2

∮
Φ(x′)d3x′

This is the potential at any point equal to the average of the potential over
the surface of any sphere. Section 1.8 of Jackson is most helpful for proving this
theorem. Taking Jackson’s lead and noting the comments made toward the end
of the section about charge-free volume, lets start with Green’s Theorem:∫

V

(φ∇2ψ − ψ∇2φ)d3x =
∮

S

[φ
∂ψ

∂n
− ψ

∂φ

∂n
]da

He does a few things to this equation. Namely, he sets

ψ =
1
R

φ = Φ

We will do the same. We will also use x′ to be the integration variable. Lets
look at the four integrals and see what we can do with them.∫

V

Φ(x′)∇2(
1
R

)d3x′ =
∫

V

Φ(x′)[−4πδ(x− x′)]d3x′ = −4πΦ(x)
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because ∇2(1/R) = −4πδ(x− x′). Take a look at the second integral∫
V

− 1
R
∇2Φ(x′)d3x′ =

∫
V

1
R

ρ

ε0
d3x′ = 0

because there is no charge in the volume we are integrating. Charge-free
volume. The third integral:∮

S

Φ(x′)
∂

∂n
(
1
R

)d2x′ = −
∮

S

Φ(x′)
1
R2

d3x′

This is looking familiar, and we should feel on the right track. But what
about the fourth integral?

∮
S

− 1
R

∂Φ(x′)
∂n

d2x′ =
∮

S

− 1
R

(∇Φ(x′) · n̂′)d2x′ =
∮

S

1
R

( ~E · n̂′)d2x′

Using the divergence theorem∫
V

~∇ · ~A d3x =
∮

S

~A · ~n da

we may change the fourth integral into∮
1
R
~E · n̂′d2x′ =

1
R

∫
V

~∇ · ~Ed3x′ =
1
R

∫
V

ρ

ε0
d3x′ = 0

because again, we are in a charge-free volume. So we are left with only the
first and third integrals,

−4πΦ(x) = −
∮

S

Φ(x′)
1
R2

d3x′

and voila, the mean value theorem for electrostatic potential in charge-free
space:

Φ(x) =
1

4πR2

∮
S

Φ(x′)d3x′

Problem 1.12

Prove Green’s reciprocation theorem: If Φ is the potential due to a volume-charge
density ρ within a volume V and a surface-charge density σ on the conducting
surface S bounding the volume V , while Φ′ is the potential due to another
charge distribution ρ′ and σ′, then∫

V

ρΦ′d3x+
∫

S

σΦ′da =
∫

V

ρ′Φd3x+
∫

S

σ′Φda
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Solution:

Using Green’s theorem and replacing

ψ → Φ′ φ→ Φ

and not forgetting equation (1.28)

∇2Φ = − ρ

ε0
∇2Φ′ = −ρ

′

ε0

and remembering the interpretation of the normal derivative of the potential
derived from boundary conditions to yeild a surface-charge density, as explained
most elegantly in section 2.3.5 in Griffiths

σ = ε0
∂Φ
∂n

σ′ = ε0
∂Φ′

∂n

we have ∫
V

(φ∇2ψ − ψ∇2φ)d3x =
∮

S

[φ
∂ψ

∂n
− ψ

∂φ

∂n
]da

go ahead and replace ψ and φ and rearrange terms:

−
∫

V

Φ′∇2Φd3x+
∮

S

Φ′ ∂Φ
∂n

da = −
∫

V

Φ∇2Φ′d3x+
∮

S

Φ
∂Φ′

∂n
da

plugging in, we get∫
V

Φ′ ρ

ε0
d3x+

∮
S

Φ′ σ

ε0
da =

∫
V

Φ
ρ′

ε0
d3x+

∮
S

Φ
σ′

ε0
da

Cancel out the ε0’s and voila, Green’s reciprocation theorem:∫
V

ρΦ′d3x+
∫

S

σΦ′da =
∫

V

ρ′Φd3x+
∫

S

σ′Φda

Problem 1.13

Two infinite grounded parallel conducting planes are separated by a distance d.
A point charge q is placed between the planes. Use the reciprocation theorem
of Green to prove that the total induced charge on one of the planes is equal
to (-q) times the fractional perpendicular distance of the point charge from the
other plane. (HINT: As your comparison electrostatic problem with the same
surfaces choose one whose charge densities and potential are known and simple.)

Solution:

We want to use Green’s reciprocation theorem:
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∫
V

ρΦ′d3x+
∫

S

σΦ′da =
∫

V

ρ′Φd3x+
∫

S

σ′Φda

to prove the top plate has a charge

Qtop = −q l
d

where l is the distance from the bottom plate, in the z direction. The hint is
trying to get us to use the electrostatic potential for a parallel plate capacitor.
That is

Φ′ = V
z

d

Where V is the potential of the top plate, and z is the distance from the
bottom plate. As we may plug in, we can see this works for

z = 0 → Φ′
bot = 0

z = d→ Φ′
top = V

For the unprimed case with the charge in the middle, Jackson equation (1.6)
gives us the charge density by means of a delta function. Also, the potentials
vanish because the plates are grounded.

ρ(~x) =
∑
i=1

qiδ(~x− ~xi) = qδxδyδz − l

Φtop = Φbot = 0

So for the primed case with no charge in the middle we have together:

ρ′ = 0

Φ′ = V
z

d

Plugging the Φ = 0 into Green’s reciprocation theorem for the surface inte-
gral and ρ′ = 0 we get: ∫

V

ρΦ′d3x+
∮

S

σΦ′d2x = 0

Plugging ρ and separating the surface integral for the two plates yields

∫
V

qδ(x)δ(y)δ(z − l)Φ′d3x+
∮

Sbot

σbotΦ′
botd

2x+
∮

Stop

σtopΦ′
topd

2x = 0

Finally, plugging in Φ′ = V z/d:
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∫
V

qδ(x)δ(y)δ(z − l)V
z

d
d3x+

∮
Sbot

σbot[0]d2x+
∮

Stop

σtop[V ]d2x = 0

This is

V q
l

d
+ 0 + V

∮
Stop

σtopd
2x = 0

V q
l

d
+ V Qtop = 0

So we have

Qtop = −q l
d
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