
Homework 2: # 2.2, 2.5, 2.7, 2.11

Michael Good

Jan 20, 2005

Problem 2.2

Using the m[e]thod of images, discuss the problem of a point charge q inside a
hollow, grounded, conducting sphere of inner radius a. Find

• the potential inside the sphere

• the induced surface-charge density

• the magnitude and direction of the force acting on q

• Is there any change in the solution if the sphere is kept at a fixed potential
V ? If the sphere has a total charge Q on its inner and outer surfaces?

Solution:

a. We will have the same results as if the charge was outside the sphere.
Equation 2.2:

φ(x) =
1

4πε0

[
q

|xn̂− yn̂′|
+

q′

|xn̂− y′n̂′|

]
Equation (2.3) and (2.4) show that to meet the boundary condition φ(x =

a) = 0 we have

q′ = −a
y
q y′ =

a2

y

therefore the potential is:

φ(x) =
1

4πε0

[
q

|xn̂− yn̂′|
− qa

y|xn̂− a2

y n̂
′|

]

φ(x) =
1

4πε0

[
q

|xn̂− yn̂′|
− qa

|yxn̂− a2n̂′|

]

1



φ(x) =
1

4πε0

[
q√

x2 + y2 − 2xy cos γ
− qa√

x2y2 + a4 − 2xya2 cos γ

]

Where I proceeded the same way Jackson did in Section 2.2.
b. For the surface charge density, the normal derivative out of the conductor

is now radially inward, meaning everything is exactly the same as before except
we have a change in sign.

σoutside = −ε0
∂φ

∂n̂
σinside = ε0

∂φ

∂n̂

Thus

σinside =
q

4πa2
(
a

y
)

1− a2

y2

(1 + a2

y2 − 2a
y cos γ)

3
2

that is, equation 2.5 with a sign change.
c. Here the distance is now

y′ − y =
a2

y
− y = y(

a2

y2
− 1)

So

|F | = 1
4πε0

q2a

y3(a2

y2 − 1)2

|F | = q2a

4πε0
y

(y2)2(a2

y2 − 1)2
=

q2a

4πε0
y

(a2 − y2)2

so

~F =
q2a

4πε0
y

(a2 − y2)2
ŷ

where the force is directed outward along y.
d. Now is there any change if the sphere is kept at V ? The potential is

φ = φgrd + V

This satisfies the boundary conditions of internal charge distribution and
potential on boundary. Thus because they are a solution to Poisson’s Equ. and
the uniqueness theorem holds, this is the only solution. The charge surface
density stays the same. (there are no charges on the surface with just a sphere
kept at V). The electric fields are the same so the force does not change.

Any change if the sphere has a total charge Q on its inner and outer surface?

Q = QI +QO
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Q = −q +QO

for no charge inside, charge resides on surface of conductor.

Q+ q = Q0

V =
QO

4πε0b
a ≤ x ≤ b

where b is the outer radius. So, if we were inside the inner radius

φ = φgrd +
QO

4πε0b
x ≤ a

The surface charge density and forces stays the same.

Problem 2.5

• Show that the work done to remove the charge q from a distance r > a to
infinity against the force, Eq. (2.6), of a grounded conducting sphere is

W =
q2a

8πε0(r2 − a2)

Relate this result to the electrostatic potential, Eq. (2.3), and the energy
discussion of Section 1.11.

• Repeat the calculation of the work done to remove the charge q against
the force, Eq. (2.9), of an isolated charged conducting sphere. Show that
the work done is

W =
1

4πε0

[
q2a

2(r2 − a2)
− q2a

2r2
− qQ

r

]
Relate the work to the electrostatic potential, Eq. (2.8), and the energy
discussion of Section 1.11.

Solution:

a. The equation is

F =
q2a

4πε0
y

y4(1− a2

y2 )2
=

q2ay

4πε0(y2 − a2)2

So lets find the work:

W =
∫ ∞

r

Fdy =
∫ ∞

r

q2ay

4πε0(y2 − a2)2
dy =

q2a

4πε0

∫
du

2u2
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with u = y2 − a2 and du = 2ydy.

W = − q2a

8πε0(y2 − a2)

∣∣∣∣∞
r

=
q2a

8πε0(r2 − a2)

Finding the potential energy, using the potential, we see that:

U =
1

4πε0
qq′

|r − r′|
=

1
4πε0

−q2a
r(r − a2

r )
= − q2a

4πε0(r2 − a2)

using q′ = −qa/r and r′ = a2/r.
Why in the world is it off by a factor of two?? Its because in the first case we

are using image charges, which move and increase in charge magnitude, while
for the second case the potential energy term is calculated assuming there is no
movement for the second charge and no change in its magnitude.

b. Equation 2.9 may be thought of as the total force of two image charges,
one at the origin with magnitude Q−q′ and one in the same place with the same
charge as above. It’s most easy to just add the work from above to the work
needed to remove our point charge to infinity from the charge at the origin. The
total work is then:

W = Wa +W0 =
q2a

8πε0(r2 − a2)
−
∫ ∞

r

q(Q− q′)
4πε0y2

dy

W =
q2a

8πε0(r2 − a2)
−
∫ ∞

r

qQ

4πε0y2
dy +

∫ ∞

r

q
qa

y

1
4πε0y2

dy

W =
q2a

8πε0(r2 − a2)
− qQ

4πε0r
− q2a

2 · 4πε0r2

W =
1

4πε0

[
q2a

2(r2 − a2)
− qQ

r
− q2a

2r2

]
For the potential energy we use the same U from part (a) and add to the

additional potential energy caused by the charge at the origin.

U =
1

4πε0

[
q2a

(r2 − a2)
−
q(Q+ a

r q)
r

]
=

1
4πε0

[
q2a

(r2 − a2)
− qQ

r
− q2a

r2

]
So here’s our factors of 2 again. They don’t appear because we are not

dealing with image charges. But the middle term is the same because he is
fixed on the sphere.
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Problem 2.7

Consider a potential problem in the half-space defined by z ≥ 0, with Dirichlet
boundary conditions on the plane z = 0 (and at infinity).

• Write down the appropriate Green function G(~x, ~x′).

• If the potential on the plane z = 0 is specified to be Φ = V inside a circle
of radius a centered at the origin, and Φ = 0 outside that circle, find an
integral expression for the potential at the point P specified in terms of
cylindrical coordinates (ρ, ψ, z).

• Show that, along the axis of the circle (ρ = 0), the potential is given by

Φ = V

(
1− z√

a2 + z2

)
• Show that at large distances (ρ2+z2 >> a2) the potential can be expanded

in a power series in (ρ2 + z2)−1, and that the leading terms are

Φ =
V a2

2
z

(ρ2 + z2)3/2

[
1− 3a2

4(ρ2 + z2)
+

5(3ρ2a2 + a4)
8(ρ2 + z2)2

+ ...

]
Verify that the results of parts c and d are consistent with each other in
their common range of validity.

Solution:

a. The Green Function for the half-space is:

G(r, r′) =
1

|r − r′|
− 1
|r − r′′|

G(r, r′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
− 1√

(x− x′)2 + (y − y′)2 + (z + z′)2

b. Using equation Jackson (1.44), and recognizing there is no free charges:

φ = − 1
4π

∮
φ(x′)

∂G

∂n′
da′

It is standard notation for n′ to point out of the volume you’re in. We are
above the plane where z ≥ 0 so n′ points along −z.

∂G

∂n′
= −∂G

∂z′

So taking the partial
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∂G

∂z′
=

− 1
2 (2)(−)(z − z′)

((x− x′)2 + (y − y′)2 + (z − z′)2)3/2
−

− 1
2 (2)(z + z′)

((x− x′)2 + (y − y′)2 + (z + z′)2)3/2

Plugging in z′ = 0 because we are using a surface integral. And surface
integrals are evaluated at the surface!

∂G

∂z′

∣∣∣∣
z′=0

=
2z

((x− x′)2 + (y − y′)2 + (z)2)3/2

Now the two negatives cancel, the one with the integral and the one with
the partial, so we are left with:

φ =
1
4π

∮
V

2z
((x− x′)2 + (y − y′)2 + (z)2)3/2

where I used φ(x′) = V inside the circle, otherwise it’d be zero, and I’d have
no answer. Converting to cylindrical coordinates

x = ρ cosφ y = ρ sinφ z = z

we have an integral expression for the potential

φ =
1
4π

∫ 2π

0

dφ′
∫ a

0

dρ′V
2zρ′

(ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + z2)3/2

c. We know ρ = 0 along the axis so

φ(0, φ, z) =
1
2π

∫ 2π

0

∫ a

0

dp′
V zp′

(ρ′2 + z2)3/2

φ(0, φ, z) =
∫ a

0

dp′
V zp′

(ρ′2 + z2)3/2

Perform a u-substitution for this integral. u = (ρ′2 + z2) and du = 2ρ′dρ′∫
zV du

2u3/2
= − zV

u1/2
= − zV√

ρ′2 + z2

∣∣∣∣∣
a

0

φ = − zV√
a2 + z2

+
zV

z

φ = V (1− z√
a2 + z2

)

d. This part is tedious algebraically. First I expressed the potential like so:

φ =
V z

2π
1

(ρ2 + z2)3/2

∫ 2π

0

dφ′
∫ a

0

dρ′ρ′(1 +
ρ′2 − 2ρρ′ cos(φ− φ′)

ρ2 + z2
)−3/2
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Now in a position to start expanding, the binomial theorem is:

(1 + x)−3/2 = 1 + [−3
2
x] +

15
8
x2 − ...

Hopefully it’s obvious what my x is. It’s the huge term full of ρ’s in the
integral. I’m going to go ahead and integrate term by term of the expansion,
starting with 1: ∫ 2π

0

∫ a

0

ρ′dρ′dφ′ = πa2

next with − 3
2x:

−3
2

∫ 2π

0

∫ a

0

ρ′2 − 2ρρ′ cos(φ− φ′)
ρ2 + z2

ρ′dρ′dφ′ = − 3πa4

4(ρ2 + z2)

and last term, 15
8 x

2:

15
8

∫ 2π

0

∫ a

0

ρ′4 − 4ρρ′3 cos(φ− φ′) + 4ρ2ρ′2 cos2(φ− φ′)
(ρ2 + z2)2

ρ′dρ′dφ′ =
5πa6

8(ρ2 + z2)2
+

15πρ2a4

8(ρ2 + z2)2

This was done using the integral:
∫ 2π

0
cos2(φ − φ′)dφ′ = π. If you add up

the terms and multiply by the term outside the integral, the overall potential is

φ(ρ, z) =
V a2z

2(ρ2 + z2)3/2

[
1− 3a2

4(ρ2 + z2)
+

5a2

8(ρ2 + z2)2
+

15a2ρ2

8(ρ2 + z2)2
+ ...)

]
These are the leading terms the problem asks to produce. With this answer,

I can now show that along the axis for part (d) and at large distances for part
(c) the terms should match because this is their common range of validity.

• Part (d) result along the axis :

φ(ρ = 0, z) =
V a2

2z2

[
1− 3a2

4z2
+

5a4

8z4
...

]
• Part (c) result for large distances, z:

φ(ρ = 0, z) = V (1− z√
a2 + z2

) = V (1− 1√
1 + a2

z2

) ≈ V a2

2z2

[
1− 3a2

4z2
+

5a4

8z4
...

]

using the binomial theorem.
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Problem 2.11

A line charge with linear charge density τ is placed parallel to, and a distance
R away from, the axis of a conducting cylinder of radius b held at fixed voltage
such that the potential vanishes at infinity. Find

(a) the magnitude and position of the image charge(s);

(b) the potential at any point (expressed in polar coordinates with the
origin at the axis of the cylinder and the direction from the origin
to the line charge as the x axis), including the asymptotic form far
from the cylinder;

(c) the induced surface-charge density, and plot it as a function of angle
for R/b = 2, 4 in units of τ/2πb;

(d) the force per unit length on the line charge.

Solution:

a. The potential of a line charge is:

φ =
λ

4πε0
ln
R2

r2

Here, R is a constant, and r2 = (x−x0)2 +(y− y0)2. Since we have a linear
charge density τ lets set the image linear charge density to τ ′. So our situation
with two lines is now

φ =
τ

4πε0
ln
R2

r2
+

τ ′

4πε0
ln
R2

r′2

The image line charge will be inside the cylinder and will have the opposite
but same magnitude charge density, i.e. τ = −τ ′. This means that if we are
super far away there will be a zero potential. So our potential is

φ =
τ

4πε0
ln
R2

r2
− τ

4πε0
ln
R2

r′2

φ =
τ

4πε0
ln
r′2

r2

But if we come real close to the cylinder, right up to the surface, we want
the potential to be fixed. (like it states in the problem) So our expression for φ
must be made so

φ(r = b) = φ(r = −b)

This gives us
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φ =
τ

2πε0
ln
|r −R′|
|r −R|

Where R′ acts as x′0 the position of the image line, and R acts as x0 the
position of the real line charge.

φ(b) = φ(−b) → ln
|b−R′|
|b−R|

= ln
|(−b)−R′|
|(−b)−R|

Since R is greater than b we have

ln
b−R′

R− b
= ln

(−b)−R′

(−b)−R

b−R′

R− b
=
b+R′

b+R

Where b, R, and R′ are still vectors. This is:

(b+R)(b−R′) = (R− b)(b+R′)

b2 − b ·R−RR′ = RR′ − b2 − b ·R′

The angle does not matter because wherever we are on the surface of the
cylinder we will still have a fixed V . So the dot terms cancel. We are left with

2b2 = 2RR′ → R′ =
b2

R

This is the same as the sphere except the potential at the surface of the
cylinder is V where as the sphere is zero.

b. Converting coordinates:

φ =
τ

4πε0
ln
ρ2 +R′2 − 2ρR′ cosφ
ρ2 +R2 − 2ρR cosφ

If we want the asymptotic form far from the cylinder let me divide by ρ and
then plug in a huge ρ compared to R or R′:

φ =
τ

4πε0
ln

1− 2R′

ρ cosφ

1− 2R
ρ cosφ

φ =
τ

4πε0
(ln[1− 2

R′

ρ
cosφ]− ln[1− 2

R

ρ
cosφ])

Using ln[1 + x] = x when x is small:

φ =
τ

4πε0
(−2

R′

ρ
cosφ+ 2

R

ρ
cosφ)
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φ =
τ

4πε0
[
2
ρ
(R−R′) cosφ]

Plugging in our result from part (a):

φ =
τ

4πε0
[
2
ρ
(R− b2

R
) cosφ]

c. The induced surface charge density is found from:

σ = − ε0
∂φ

∂ρ

∣∣∣∣
ρ=b

Using

φ =
τ

4πε0
ln
ρ2 +R′2 − 2ρR′ cosφ
ρ2 +R2 − 2ρR cosφ

φ =
τ

4πε0

[
ln(ρ2 +R′2 − 2ρR′ cosφ)− ln(ρ2 +R2 − 2ρR cosφ)

]
Lets take a derivative, remembering the chain rule:

σ = − ε0
τ

4πε0

(
2ρ− 2R′ cosφ

ρ2 +R′2 − 2ρR′ cosφ
− 2ρ− 2R cosφ
ρ2 +R2 − 2ρR cosφ

)∣∣∣∣
ρ=b

This is

σ = − τ

2π

(
b−R′ cosφ

b2 +R′2 − 2bR′ cosφ
− b−R cosφ
b2 +R2 − 2bR cosφ

)
Plugging in R′ = b2/R and multiplying R2/b2 on the first term yields:

σ = − τ

2π

(
b− b2

R cosφ

b2 + b4

R2 − 2 b3

R cosφ
− b−R cosφ
b2 +R2 − 2bR cosφ

)

σ = − τ

2π

(
R2

b − b

b2 +R2 − 2bR cosφ

)

σ =
τ

2π

(
−(R

b )2 + 1
b+ (R

b )2b− 2R cosφ

)

σ =
τ

2πb

(
−(R

b )2 + 1
1 + (R

b )2 − 2(R
b ) cosφ

)
Where I have rearranged it for R/b and units τ/2πb. So I have:

σ(R/b = 2) = − 3
5− 4 cosφ
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σ(R/b = 4) = − 15
17− 8 cosφ

You can graph this on any software, or on any java applet. I used this site

http://www.shodor.org/interactivate/activities/sketcher/

d. This is the force between two wires. No need to worry about the cylinder
situation, just weld the power of images and understand that the force is

F = qE

and the electric field of an infinite wire is

E =
τ

2πε0s

This is equation (2.9) in Griffiths. Here s is the distance from the wire, in
our case we are R−R′ away from the image wire, so using R′ = b2/R:

E =
τ ′

2πε0(R−R′)
=

τ ′

2πε0(R− b2/R)
=

τ ′R

2πε0(R2 − b2)

Since we want force per unit length

F

l
= τE

So because τ = −τ we have an attractive force per unit length of:

F

l
= − τ2R

2πε0(R2 − b2)
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