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Problem 1:

Show that Pauli’s equation,

[
1

2m
(
~
i
~∇− e

c
~A(~r))2 − e~

2mc
~σ · ~B(~r)]αβψβ(~r) = i~

∂

∂t
ψα(~r)

can be more compactly written as

1
2m

[(~π(~r) · ~σ)(~π(~r) · ~σ)]αβψβ(~r) = i~
∂

∂t
ψα(~r)

where ~π = ~
i
~∇− e

c
~A(~r).

Show that the equation in a rotated frame,(r′i = Rijrj etc.)

1
2m

[(~π′(~r′) · ~σ)(~π′(~r′) · ~σ)]αβψ
′
β(~r′) = i~

∂

∂t
ψ′

α(~r′)

is indeed given by the rotated form of the original equation, i.e.,

Rαβ(
1

2m
[(~π(~r) · ~σ)(~π(~r) · ~σ)]γβψβ(~r)− i~

∂

∂t
ψγ(~r)) = 0

This demonstrates the rotational covariance of the Pauli equation.
b. Show that the following Maxwell’s equation

∂νF
µν =

e

c
Jµ

is Lorentz covariant, i.e., the equation in another Lorentz frame

∂′νF
′µν =

e

c
J ′µ

is equivalent to the Lorentz transform of the original equation

Λµ
ν(∂αF

βα − e

c
Jβ) = 0

Answer:
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Using σiσj = δij + iεijkσk or also from the fundamental product rule of
geometric algebra, we obtain the familiar relation,

(σ ·A)(σ ·B) = A ·B + iσ · (A×B)

With

1
2m

[(~π(~r) · ~σ)(~π(~r) · ~σ)]αβψβ(~r) = i~
∂

∂t
ψα(~r)

we have

1
2m

[π2 + iσ · (π × π)]αβψβ = i~∂tψα

where the vector arrows and their respective functions have been supressed.
Plugging in for π

1
2m

[(p− e

c
A)2 + iσ · (p− e

c
A)× (p− e

c
A)]αβψβ = i~∂tψα

1
2m

[(p− e

c
A)2 − i

e

c
σ · (p×A+A× p)]αβψβ = i~∂tψα

The cross product terms can be evaluated, as is also done in Ryder p.54 by,

[pi, Aj ] = −i~∂iAj

Subtracting,

[pi, Aj ]− [pj , Ai] = −i~(∂iAj − ∂jAi)

Multiplying by εijk,

(piAj − pjAi)εijk + (Aipj −Ajpi)εijk = −i~(∂iAj − ∂jAi)εijk

Summing over i and j give the k component of −i~ ~B, therefore, we can use

p×A+A× p = −i~∇×A = −i~B

I now have

1
2m

[(p− e

c
A)2 − i

e

c
σ · (−i~B)]αβψβ = i~∂tψα

which, unsupressing vector signs and functional dependence, is

[
1

2m
(
~
i
~∇− e

c
~A(~r))2 − e~

2mc
~σ · ~B(~r)]αβψβ(~r) = i~

∂

∂t
ψα(~r)

To demonstrate the rotational covariance of the Pauli equation, we need to
show that this:
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Rαβ(
1

2m
[(~π(~r) · ~σ)(~π(~r) · ~σ)]γβψβ(~r)− i~

∂

∂t
ψγ(~r)) = 0

equals this:

1
2m

[(~π′(~r′) · ~σ)(~π′(~r′) · ~σ)]αβψ
′
β(~r′) = i~

∂

∂t
ψ′

α(~r′)

In order to simplify my life, I’m going to drop the functional dependence
notation, the vector hats, and for a trial run, even the indices. This will better
demonstrate the overall idea. Watch out for the indicies, as they can make life
harder than it really is. The solution sketch goes like this:

R{[π · σ)(π · σ)]ψ} =
∂

∂t
ψ′

R{[π · σ)(π · σ)]R†ψ′} =
∂

∂t
ψ′

R{[π · σ)R†R(π · σ)]R†ψ′} =
∂

∂t
ψ′

(π · σR)(π · σR)ψ′ =
∂

∂t
ψ′

(π′ · σ)(π′ · σ)ψ′ =
∂

∂t
ψ′

Now, in order to make things grossly explicit, I’m going to put in indicies
and keep track in glory detail. First I need to change ψβ

ψβ = δβλψλ = R†
βρRρλψλ = R†

βρψ
′
ρ

So we have, including the indicies and simply rotating the right side term,

Rαγ{
1

2m
[(πiσi)(πkσk)]γβψβ} = i~

∂

∂t
ψ′

α

Substituting my ψβ , the left hand term becomes

Rαγ
1

2m
[(πiσi)(πkσk)]γβR†

βρψ
′
ρ

Inserting an identity matrix right smack in the middle, we have

1
2m

Rαγ(πiσi)γδR†
δλRλε(πkσk)εβR†

βρψ
′
ρ = i~

∂

∂t
ψ′

α

If I use the property, σiRik = RσkR†, I conclude that the left hand side
becomes

1
2m

(πiσjRji)αλ(πkσiRik)λρψ
′
ρ

3



Using, π′j = Rjiπi, this becomes

1
2m

(π′jσj)αλ(π′iσi)λρψ
′
ρ

Lets simplify those indicies and our equation is now

1
2m

[(π′jσj)(π′iσi)]αρψ
′
ρ = i~

∂

∂t
ψ′

α

As the ρ’s are of course just dummies, we have

1
2m

[(~π′(~r′) · ~σ)(~π′(~r′) · ~σ)]αβψ
′
β(~r′) = i~

∂

∂t
ψ′

α(~r′)

which demonstrates the rotational covariance of the Pauli equation.

Part b.

If we evaluate

Λµ
β(∂αF

βα − e

c
Jβ) = 0

we have

Λµ
β∂αF

βα − Λµ
β

e

c
Jβ = 0

Λµ
β∂αF

βα − e

c
J ′µ = 0

Λµ
β∂αF

βα =
e

c
J ′µ

Using, Λν
α∂

α = ∂′ν , and applying an inverse transformation, yields,

Λ α
ν ∂

′ν = Λ α
ν Λν

α∂
α

Λ α
ν ∂

′ν = ∂α

Λν
α∂

′
ν = ∂α

Plugging this into ∂α,

Λµ
β(Λν

α∂
′
ν)F βα =

e

c
J ′µ

∂′νΛµ
βΛν

αF
βα =

e

c
J ′µ

∂′νF
′µν =

e

c
J ′µ
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therefore this Maxwell equation is Lorentz covariant.
Problem 2:
The Klein Paradox. Consider a one dimensional potential barriar problem for
the KG equation for which

Hclassical =
√
p2 +m2 + V

V =

{
V0 x > 0
0 x < 0

For stationary state solutions

φ(x, t) = e−iEtf(x)

we have

f(x) = Aeikx +Be−ikx k =
√
E2 −m2 x < 0

f(x) = CeiKx K =
√

(E − V0)2 −m2 x > 0

We expect that for V0 > E −m = kinetic energy (the non-classically allowed
case) K is imaginary so that f(x) is purely damped. Show that this expectation
is NOT borne out for V0 > E +m. Draw the energy spectrum for both regions
x < 0 and x > 0; try to explain the paradox.

Answer:

The expectation that K is imaginary is not borne out when V0 > E + m
because K2 is now positive. This can be seen by just plugging

V0 > E +m

into

K2 = (E − V0)2 −m2

where the first term will now be larger than m2. We would normally expect
the wavefunction to be even more strongly damped, since V0 > E + m, but
because K2 > 0 we have a region which is oscillatory like the region x < 0.
Basically, a particle can be confined in the region x < 0 and tunnel through
the region where x > 0 and V0 > E − m, and then behave like it was in an
attractive potential in region x > 0 and V > E + m. Despite the fact that
V > E + m seemingly implies it would behave like a particle in a very strong
repulsive potential.

The free-particle solutions to the Dirac equation exhibit an energy spectrum
from −m to −∞ and from m to ∞. The condition to have negative energy
oscillatory solutions with an applied small positive potential is:
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−∞ < E < −m+ V

From this we can see that E doesn’t have to be negative. One way to explain
the Klein-Gordon paradox is that we have a negative energy solution despite
E > 0. We would just increase V enough so an oscillatory negative energy solu-
tion can have the same positive energy as an oscillatory positive energy solution
where x < 0.

Problem 4:

a. Show that ∂cċε
ċȧ∂aȧε

abφb = ∂2φc.

b. Show that if φ obeys (−∂2 +m2)φa = 0 , so does χ̇.

Answer:

Substituting ∂aḃ = (σµ)aḃ∂
µ and εab = εȧḃ = iσ2 we will have

∂cċε
ċȧ∂aȧε

abφb = (σµ)cċ∂
µ(iσ2)ċȧ(σν)aȧ∂

ν(iσ2)abφb

= (σµ)cċ(iσ2)ċȧ(σν)aȧ(iσ2)ab∂µ∂νφb

= (σµ)cċ(iσ2)ċȧ(σT
ν )ȧa(iσ2)ab∂µ∂νφb

= (σµ)cċ(σν)ċb∂µ∂νφb
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Where I used σ2σ
T
i σ2 = −σi in the last step. Now applying the anticommu-

nitive property of the matrices,

{σµ, σν} = 2δµ
ν

Then I’ve got

(σµσν)b
c =

1
2
{σµ, σν}b

c =
1
2
· 2{δµν}b

c = {δµν}b
c

Therefore

(σµ)cċ(σν)ċb∂µ∂νφb = (δµν)b
c∂

µ∂νφb

= ∂µ∂µφc

= ∂2φc

which is what we set out to prove. ∂cċε
ċȧ∂aȧε

abφb = ∂2φc .

For part b, we know that φ satisfies (−∂2 +m2)φa = 0, so to prove

(−∂2 +m2)χ̇c = 0

we shall start with

∂bḃε
ḃȧχ̇ȧ = mφb

and multiply by ∂cċε
cb to get

∂cċε
cb∂bḃε

ḃȧχ̇ȧ = ∂cċε
cbmφb

Applying our property that we proved in part (a), we may write the left
hand side as

∂cċε
cb∂bḃε

ḃȧχ̇ȧ = ∂2χ̇ċ

So we have

∂2χ̇ċ = ∂cċε
cbmφb

Using ∂cċε
cbφb = mχ̇ċ,

∂2χ̇ċ = m2χ̇ċ

This is

(−∂2 +m2)χ̇ċ = 0
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Problem 5:

a. Denote the set of 16 γ-matrices by P = (1, γ5, γµ, γ5γµ, σµν). Find their
trace. Show that (1, γ5, γµ) are linearly independent.

b. Simplify γµγµ, γµγνγµ, and γµγνγργµ.

c. Find Tr(γµγν), Tr(γγγνγl), and Tr(γµγνγlγσ).

Answer:

Tr(1) = 4

as these are four by four matrices. In a particular representation, say the
standard Dirac-Pauli representation, we have for γ5:

Tr(γ5) = Tr

(
0 −I
−I 0

)
= 0

but this is true as the trace of any odd number of gamma matrices is zero.

Tr(γ5) = Tr(γ1γ1γ5) = −Tr(γ1γ5γ1) = −Tr(γ1γ1γ5) = −Tr(γ5)

Tr(γ5) = 0

Tr(γµ) = Tr(γ5γ5γµ) = −Tr(γ5γµγ5) = −Tr(γ5γ5γµ) = −Tr(γµ)

As it is equal to its negative, it must vanish.

Tr(γµ) = 0

Tr(γ5γµ) = −Tr(γµγ5) = −Tr(γ5γµ)

Via anticommunitivity, for the first step and cyclic property of the trace for
the second step.

Tr(γ5γµ) = 0

The four by four spin matrices, contain

Tr(σµν) = Tr(
i

2
[γµ, γν ]) =

i

2
Tr(γµγν − γνγµ)

Now for any n× n matrices U and V
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Tr(UV ) = Tr(V U)

Thus

Tr(σµν) = 0

Linear independence of 1 , γ5 and γµ means if

A1 +Bγ5 + Cγmu = 0

then

A = B = C = 0

I can show A = 0 by multiplying by 1 and taking the trace:

Tr(A1 +Bγ5 + Cγµ) = 0

Tr(A1) + Tr(Bγ5) + Tr(Cγµ) = 0

and from above, the last two terms where shown to be zero,

Tr(A1) = 0

A = 0

If A = 0 then Bγ5 + Cγµ = 0 must imply B and C are zero for linear
independence. Multiplying by 1γ5 and taking the trace again,

B1 + Cγµγ5 = 0

Tr(B1) = −Tr(Cγµγ5)

Tr(B1) = 0

B = 0

Thus we have left,

Cγµ = 0

which implies

C = 0

And we have shown that 1 , γ5 and γµ are linaer independent.
b. Here we have
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γµγµ = ηµνγ
µγν =

1
2
ηµν{γµ, γν} = ηµνη

µν = 4

where I used {γµ, γν} = 2ηµν .
So we’ve got:

γµγµ = 4

It’s not hard to simplify γµγνγµ, just apply the anticommutivity property,

γµγνγµ = (2ηµν − γνγµ)γµ = 2γν − γνγµγµ

and from the above box,

γµγνγµ = 2γν − γν · 4

γµγνγµ = −2γν

The same process goes for γµγνγργµ :

γµγνγργµ = (2ηµν − γνγµ)(γργµ)

Using the above box

2γργν − γνγµγργµ = 2γργν − γν(−2γρ) = 2(γργν + γνγρ)

applying the anticommuntivity property,

γµγνγργµ = 2{γρ, γν} = 4ηρν

γµγνγργµ = 4ηνρ

c. The trace can be found though anticommutation and cyclicity.

Tr(γµγν) = Tr(2ηµν · 1− γνγµ)

Cycle the last term and recall the Tr(1) = 4:

Tr(γµγν) = 2ηµν · 4− Tr(γµγν)

Bring the last term to the other side and viola:

Tr(γµγν) = 4ηµν

Next, any odd number gamma trace will be zero, for this three gamma trace
we have,

Tr(γγγνγρ) = Tr(γ5γ5γγγνγρ)
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as γ5γ5 = 1, and since {γ5, γµ} = 0 I can say

Tr(γγγνγρ) = −Tr(γ5γγγνγργ5)

Cycle through

Tr(γγγνγρ) = −Tr(γ5γ5γγγνγρ) = −Tr(γγγνγρ)

As the trace equals the negative of itself, it must vanish:

Tr(γγγνγρ) = 0

Lastly, we can evaluate Tr(γµγνγργσ) through repeated use of the anticom-
munitivity relation.

Tr(γµγνγργσ) = Tr(2ηµνγργσ − γνγµγργσ)

Apply it again,

Tr(γµγνγργσ) = Tr(2ηµνγργσ − γν2ηµργσ + γνγργµγσ)

and again,

Tr(γµγνγργσ) = Tr(2ηµνγργσ − γν2ηµργσ + γνγρ2ηµσ − γνγργσγµ)

Bring the last term over to the otherside after cycling it once and we get

2 · Tr(γµγνγργσ) = 2 · Tr(ηµνγργσ − γνηµργσ + γνγρηµσ)

Using our Tr(γµγν) = 2ηµν from above,

Tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)
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