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1 Sakurai 6.1

A. N identical spin 1/2 particles are subjected to a one-dimensional simple har-
monics oscillator potential. What is the ground-state energy? What is the Fermi
energy?

The particles are spin 1/2 and only fermions have half-integer spin. Fermions
also obey the Pauli exclusion principle, which states that no two fermions can
occupy the same state. Thus, not all the particles will occupy the ground state
energy of the 1D harmonic oscillator. They end up piling up on each other until
they are pushed up to higher and higher energy states. If you begin counting
at n = 0 for the 1st particle, and n = 1 for the 2nd particle, then both occupy
the lowest energy( (1/2)h̄ω ), one particle having spin up, and one having spin
down. Therefore, it is best to say you have a total of N/2 particles and sum up
only the spin up(or spin down) and multiply the sum by 2. Then you will have
the total sum of energies for all the particles, where the nth energy level is:

En = (n+ 1/2)h̄ω

First I will sssume I have an even total number of particles, 2 for each energy
state. I will start summing at n = 0 and the sum will go toN/2−1. So, summing
up the energies of the particles for N/2 particles and multiplying by 2 yeilds:

EgrdEven = 2
N/2−1∑

n=0

(n+ 1/2)h̄ω = 2h̄ω
N

2
[
(1/2) + (N/2− 1) + 1/2)

2
] =

N2

4
h̄ω

If you assume that we have an odd number of total particles, then sum will
go to N/2− 1/2 because there is only one in the top energy state. It is the last
fermion that is the odd one out in the most energetic state.

EgrdOdd = 2
N/2−1/2∑

n=0

(n+1/2)h̄ω = 2h̄ω
N

2
[
1/2 +N/2− 1/2 + 1/2

2
] =

N2 +N

4
h̄ω
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What is the Fermi energy?

The Fermi energy is the maximum or highest state of energy that is occupied.
Cohen-Tannoudji [p.1398] defines the Fermi energy as the highest individual
energy found in the ground state. The unluckiest fermion with the highest
energy is the last one marked N/2− 1. Its energy is found using En.

EFermiEven = (N/2− 1 + 1/2)h̄ω = (N − 1)
h̄ω

2
For an odd number of particles, the highest individual energy found is held

by the fermion marked N/2− 1/2. Its energy can also be plugged into En.

EFermiOdd = (N/2− 1/2 + 1/2)h̄ω =
N

2
h̄ω

B. What are the ground state and Fermi energies if we ignore the mutual
interactions and assume N to be very large?

If N is very large, then it doesn’t really matter whether we have an even
or an odd number of particles. One extra particle isn’t going to make much
difference when we are talking about such a huge energy. Thus, the ground
state energies (as well as the Fermi energies) for both an odd and even amount
of particles can be approximated to be the same:

As N →∞ then EFermi =
N

2
h̄ω and Eground =

N2

4
h̄ω

2 Sakurai 6.2

It is obvious that two nonidentical spin 1 particles with no orbital angular mo-
menta (that is, s-states for both) can form j=0, j=1, and j=2. Suppose, however,
that the two particles are identical. What restrictions do we get?

It is not obvious to the novice quantum mechanics student that j=0, j=1, and
j=2 for total angular momentum formed for two nonidentical spin 1 particles
with l=0. A careful derivation of:

J = j1 + j2, j1 + j2 − 1, j1 + j2 − 2, ..., |j1 − j2|

is given in Cohen-Tannoudji 1977, p. 1017, that explains the pattern and why
the total angular momentum ranges from J = s1 +s2 = 0 (if one particle is spin
-1 and the other is spin +1) to J = s1 + s2 = 2 (if both particles are spin +1).
Thus leading to the values, 0, 1, and 2. A more simple walk-through is given
by Griffiths p. 167, but he also refers to the proof of Cohen-Tannoudji.

Spin 1 particles are bosons. Empirically, a system of N identical parti-
cles that are totally symmetrical under the interchange of any pair are called
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bosons. Thus, the total wavefunctions we are dealing with are symmetric un-
der interchange. The l=0 requirement dictates that the spatial wavefunction
is symmetric. Thus we need to impose the restriction that only symmetric
Clebsch-Gordon combinations are allowed, i.e. that only symmetric spin wave
functions are allowed.

For the values of j=0, 1, and 2, the following expression for changing the
order of the two particles is useful:

〈j2, j1;m2,m1|j,m〉 = (−1)j1+j2−j〈j1, j2;m1,m2|j,m〉
This symmetry relation is found in Cohen-Tannoudji p. 1041. Here the sign
is of most concern. If the sign is positive, then the interchange is symmetric.
If the sign is negative, then the interchange is antisymmetric and should be
disregarded. In our case, both particles are spin 1, j1 = j2 = s = 1 therefore
the sign term is (−1)2−j . For various values of j only even values will create
a symmetric interchange of particles. Therefore only the states with j=0, and
j=2 are allowed.

3 Sakurai 6.3

Discuss what would happen to the energy levels of a helium atom if the electron
were a spinless boson. Be as quantitative as you can.

This problem illustrates a quantuum mechanical effect due to particle iden-
tity. Assuming that the electron has a symmetric wave function under inter-
change, i.e. is a boson, and that its spin happens to be zero, we have a situation
very similiar to the spin singlet state for the helium atom. The spin singlet state
has total spin zero, −1/2 + 1/2 = 0 and a symmetric space function. For the
spin singlet case, the electrons have a tendency to come close to each other re-
sulting in appreciable electrostatic repulsion and more excitation (higher energy
levels). As for a quantitative description, the spatial wave function is always
symmetrical(thus I + J and not I − J), and the energy of state (1s)(nl) is:

E = E100 + Enlm + ∆E

with

∆E = 〈 e
2

r12
〉 = I + J

where both I and J are positive defined in Sakurai (6.4.19):

I =
∫
d2x1

∫
d3x2|ψ100(x1)|2|ψnlm(x2)|2

e2

r12

J =
∫
d2x1

∫
d3x2ψ100(x1)ψnlm(x2)

e2

r12
ψ∗

100(x2)ψ∗
nlm(x1)

This should push the energy levels higher for the helium atom, leaving the
ground state the same.
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4 Sakurai 6.4

Three spin 0 particles are situated at the corners of an equilateral triangle. Let
us define the z-axis to go through the center and in the direction normal to the
plane of the triangle. The whole system is free to rotate about the z-axis. Using
statistics considerations, obtain restrictions on the magnetic quantum numbers
corresponding to Jz.

In this problem the wave function is symmetric under the interchange of any
two particles, because we are dealing with bosons. So, if you rotate the triangle
to interchange the particles positions, say particle 1 goes to 2’s position, particle
2 goes to 3’s position and particle 3 goes to 1’s position, then you have rotated
the triangle 120◦. This rotation is represented by the rotation operator given
by Sakurai (3.1.16):

Dz(φ) = exp(
−iJzφ

h̄
) where Jz = mzh̄

thus the operator becomes

Dz(120◦) = exp(−imz
2π
3

)

The wavefunction of the system will be unchanged after this rotation because
you can’t tell the particles apart from each other, they are identical!

exp(−imz
2π
3

)|ψ〉 = |ψ〉

This happens when

exp(−mz
2π
3

) = 1

therefore; because of Euler’s relation e−i2πn = cos(2πn)− isin(2πn) = 1;

mz = any multiple of 3

5 Sakurai 6.5

Consider three weakly interacting, identical spin 1 particles.
a. Suppose the space part of the state vector is known to be symmetric under
interchange of any pair. Using notatin |+〉|0〉|+〉 for particle 1 in ms = +1,
particle 2 in ms = 0, particle 3 in ms = +1, and so on, construct the normal-
ized spin states in the following three cases:
(i) All three of them in |+〉
(ii) Two of them in |+〉, one in |0〉.
(iii) All three in differenet spin states.
What is the total spin in each case?
b. Attempt to do the same problem when the space part is antisymmetric under
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interchange of any pair.

The spin wave function must be symmetric in these cases. If all three parti-
cles are in the |+〉 state, the ket is aleady symmetric and normalized, with total
spin 3:

X1 = |+〉|+〉|+〉

If two are in |+〉 and one in |0〉, the total spin is 2, with notation:

X2 =
1√
3
(|+〉|+〉|0〉+ |+〉|0〉|+〉+ |0〉|+〉|+〉)

If all three are in different states, then the notation is:

X3 =
1√
6
(|+〉|−〉|0〉+ |+〉|0〉|−〉+ |0〉|+〉|−〉+ |0〉|−〉|+〉+ |−〉|+〉|0〉+ |−〉|0〉|+〉)

This is essentially equation (6.5.23) in Sakurai. From Sakurai p. 373, there
are 10 dimensions for symmetry in the 3 primitive object group, or 10 symmet-
rical states:

1 1 1 1 1 2 1 1 3 1 2 2 1 2 3

1 3 3 2 2 2 2 2 3 2 3 3 3 3 3

Where only the 1 2 3 and 2 2 2 states have mJ = 0, because +1+0+−1 =
0 and 0 + 0 + 0 = 0. Sakurai mentions that contains both j = 3(seven
states) and j = 1(three states). Therefore X3 is a mixed j=3 and j=1 state.

For part B., the space part is antisymmetric and that means that (i) and
(ii) are not possible because:

1
1
1

and
1
1
2

do not increase as you go down, violating the rules of Young’s Tableaux.
For the case of all three being in different states (iii) is the singlet J = 0

state. The best way to get this is from a convenient trick used for constructing
completely antisymmetric wave functions, the Slater determinant, which in this
case is:

1
2
3

=
1√
3!

∣∣∣∣∣∣
|+〉1 |0〉1 |−〉1
|+〉2 |0〉2 |−〉2
|+〉3 |0〉3 |−〉3

∣∣∣∣∣∣ .
This yeilds the antisymmetric spin function:
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1
2
3

=
1√
6
(|+〉|0〉|−〉− |+〉|−〉|0〉+ |0〉|−〉|+〉− |0〉|+〉|−〉+ |−〉|+〉|0〉− |−〉|0〉|+〉)

6 Sakurai 6.6

Suppose the electron were a spin 3
2 particle obeying Fermi-Dirac statistics. Write

the configuration of a hypothetical Ne (Z = 10) atom made up of such ’electrons’
[that is, the analog of (1s)2(2s)2(2p)6]. Show that the configuration is highly de-
generate. What is the ground state (the lowest term) of the hypothetical Ne atom
in spectroscopic notation(2S+1Lj, where S, L, and J stand for the total spin, the
total orbital angular momentum, and the total angular momentum, respectively)
when exchange splitting and spin-orbit splitting are taken into account?

Sakurai states on p. 251 that for an atomic electron, each level should be
expected to have a 2j + 1 fold rotational degeneracy as long as there is no
external electric or magnetic field. So for a fixed l=0, such as in the s orbital,
s+l = 3/2+0 = j. When j = 3/2, there is a 2j+1 = 2(3/2)+1 = 4 multiplicity.
To find out how many of these crazy electrons can be held in each s,p,d,f etc
orbital the formula 4n2 works, as opposed to 2n2 for when the electrons are not
crazy. For instance:

(2s+ 1)(2l + 1) = (2(1/2) + 1)(2(0) + 1) = 2 electrons in s orbital
(2s+ 1)(2l + 1) = (2(1/2) + 1)(2(1) + 1) = 6 electrons in p orbital
(2s+ 1)(2l + 1) = (2(1/2) + 1)(2(2) + 1) = 10 electrons in d orbital
(2s+ 1)(2l + 1) = (2(1/2) + 1)(2(3) + 1) = 14 electrons in f orbital

2n2 = number of electrons held at energy level, 2+6+10+14 = 2n2 = 2(4)2 = 32

This is not the whole story, as Griffiths puts it,[p.190] because electron-electron
repulsion throws the counting off, but its good enough for our purposes. So, in
the case of dealing with crazy electrons that have 3/2 spin, the counting will go
differently:

(2s+ 1)(2l + 1) = (2(3/2) + 1)(2(0) + 1) = 4 electrons in s orbital
(2s+ 1)(2l + 1) = (2(3/2) + 1)(2(1) + 1) = 12 electrons in p orbital
(2s+ 1)(2l + 1) = (2(3/2) + 1)(2(2) + 1) = 20 electrons in d orbital
(2s+ 1)(2l + 1) = (2(3/2) + 1)(2(3) + 1) = 28 electrons in f orbital

4n2 = number of electrons held at energy level, 4+12+20+28 = 4n2 = 4(4)2 = 64

So for a hypothetical Ne with 10 hypothetical 3/2 spin electrons, the analog
of (1s)2(2s)2(2p)6 is:

(1s)4(2s)4(2p)2
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This configuration is highly degenerate because there are so many possi-
ble states of spin and orbital angular momentum available. This follows from
C(12, 2) = 12!/((12 − 2)!2!) = 66, where we have 4 different values of S, 3 dif-
ferent values of L, and 2 electrons. Because there are 2 valence electrons, each
with spin 3/2, the possible total spin follows:

S = s1 + s2, s1 + s2 − 1, s1 + s2 − 2, ..., |s1 − s2| = 3, 2, 1, 0

The total orbital angular momentum also follows:

L = l1 + l2, l1 + l2 − 1, l1 + l2 − 2, ..., |l1 − l2| = 2, 1, 0

There is a restriction on the possible states because the electrons we are
dealing with are still fermions and are subject to the Pauli exclusion principle.
The angular momentum and spin configurations must be antisymmetric under
particle exchange, leading to spin and spatial functions having opposite par-
ity. With Leven symmetric, Lodd antisymmetric, Seven antisymmetric, and Sodd

symmetric the possible states are only:

|S,L〉 =

|3, 1〉 = (2 ∗ 3 + 1)(2 ∗ 1 + 1) = 21 states
|2, 2〉 = (2 ∗ 2 + 1)(2 ∗ 2 + 1) = 25 states
|2, 0〉 = (2 ∗ 2 + 1)(2 ∗ 0 + 1) = 5 states
|1, 1〉 = (2 ∗ 1 + 1)(2 ∗ 1 + 1) = 9 states
|0, 2〉 = (2 ∗ 0 + 1)(2 ∗ 2 + 1) = 5 states
|0, 0〉 = (2 ∗ 0 + 1)(2 ∗ 0 + 1) = 1 state

Which adds up to 66 states, (very highly degenerate). Hund’s rule says that the
state with the largest possible value of S is the most stable state, and stability
decreases with decreasing S. So the state with S = 3 has the lowest energy and
thus will be used for the ground state. The orbital angular momentum and
spin will be in opposite directions. The lowest J lies in the lowest energy, thus
J = |L − S| = 2. With L=1, S=3, and J=2, the formula for spectroscopic
notation becomes:

2S+1Lj = 2(3)+112 = 7P2

7 Sakurai 6.7

Two identical spin 1
2 fermions move in one dimension under the influence of

the infinite-wall potenital V = ∞ for x < 0, x > L, and V=0 for 0 ≤ x ≤ L.
a. Write the ground-state wave function and the ground-state energy when the
two particles are constrained to a triplet spin state(ortho state).
b. Repeat (a) when they are in a singlet spin state (para state).
c. Let us no suppose that the two particles interact mutually via a very short-
range attractive potential that can be approximated by

V = −λδ(x1 − x2) (λ > 0)
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Assuming that perturbation theory is valid even with such a singular potential,
discuss semiquantitatively what happens to the energy levels obtained in (a) and
(b).

The ortho state or triplet spin state is symmetrical [as explained on p.363],
thus the space part of the wave function will be antisymmetrical to agree with
Fermi-Dirac statistics (6.3.6). We are after the ground state wavefunction which
by the way, for a single particle in the infinite well potential is:

ψn(x) =

√
2
L

sin(
nπ

L
x)

with ground state energy:

En =
n2π2h̄2

2mL2

with n = 1 for the ground state. For two fermions though, the antisymmet-
rical ground state wave function is:

ψgrd =
1√
2
[ω1(x1)ω2(x2)− ω1(x2)ω2(x1)]

Plugging in for the values of the ω’s

Triplet: ψgrd =
√

2
L

[sin
πx1

L
sin

2πx2

L
− sin

πx2

L
sin

2πx1

L
]

with ground state energy:

Egrd = E1 + E2 =
π2h̄2

2mL2
+

22π2h̄2

2mL2
=

5π2h̄2

2mL2

For the para state, or singlet spin state, we have an antisymmetrical spin
function. Therefore, using the same Fermi-Dirac statistics, we need a symmet-
rical space part of the wave function:

ψgrd =
1√
2
[ω1(x1)ω1(x2) + ω1(x2)ω1(x1)] =

2√
2
[ω1(x1)ω1(x2)]

after normalization (because there is only 1 term!)

Singlet: ψgrd = ω1(x1)ω1(x2) =
2
L

sin
πx1

L
sin

πx2

L

with ground state energy:

Egrd = E1 + E1 =
π2h̄2

mL2
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As for the interaction via a perturbation V = −λδ(x1− x2) the energy level
changes can be explored using first order perturbation theory: E′ = 〈ψ0|V |ψ0〉.

The triplet state has a shift:

E′
triplet =

∫
dx1dx2

−λ
2

[ω1(x1)ω2(x2)− ω1(x2)ω2(x1)]2δ(x1 − x2)

This is going to be zero no matter what, because for the particles to actually
interact, they must be at the same position, to avoid the delta function being
zero, but if they are at the same position, then ω1(x1)ω2(x2) − ω1(x2)ω2(x1)
becomes ω1(x)ω2(x)− ω1(x)ω2(x) = 0. Therefore, semiquantitatively,

E′
triplet = 0

The singlet state has a shift:

E′
singlet = −

∫
dx1dx2|ω1(x1)ω1(x2)|2λδ(x1 − x2)

This will actually have an answer because to interact the particles need to be
at the same place, and when that happens the symmetric space function doesnt
go to zero, it follows

E′
singlet = −

∫
dx1dx2

4
L2

[sin
πx1

L
sin

πx2

L
]2λδ(x1 − x2)

= −4
λ

L2

∫
dx sin4 πx

L

= −4
λ

L2

∫ L

0

dx sin4 πx

L

and because∫ L

0

dx sin4 πx

L
=

3
8
L−

sin 2 π
LL

4 π
L

+
sin 4 π

LL

32 π
L

=
3
8
L

the shift in energy is finally,

E′
singlet = −4

λ

L2
(
3
8
L) = −12λ

8L
= − 3λ

2L
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